Skip to main content
Log in

Mitochondrial DNA-Based Analyses of Relatedness Among Turkeys, Meleagris gallopavo

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The domesticated turkey, Meleagris gallopavo, is believed to be a single breed with several varieties whose relatedness and origins remain poorly understood. Using the mitochondrial genome sequence (GenBank accession no. EF153719) that our group first reported, we investigated the relationships among 15 of the most widely occurring turkey varieties using D-loop and 16S RNA sequences. We included, as a non-traditional outgroup, mtDNA sequence information from wild turkey varieties. A total of 24 SNPs, including 18 in the D-loop and 6 in the 16S rRNA, was identified, validated and used. Of the 15 haplotypes detected based on these SNPs, 7 were unique to wild turkeys. Nucleotide diversity estimates were relatively low when compared to those reported for chickens and other livestock. Network and phylogenetic analyses showed a closer relationship among heritage varieties than between heritage and wild turkeys. The mtDNA data provide additional evidence that suggest a recent divergence of turkey varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Poultry Association (2001) The American Standard of Perfection. American Poultry Association, Inc., Troy

    Google Scholar 

  • Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, Banchieri N, Bellini O, Dal Bello B, Pilotto A, Magrini G, Campana C, Fortina P, Gavazzi A, Narula J, Viganò M (1998) Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 153:1501–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Austic RE, Nesheim MC (1990) Poultry production, 13th edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E (2007) Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 7:354–357

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Pasoda D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Drovetski SV (2002) Molecular phylogeny of grouse: individual and combined performance of W-linked, autosomal, and mitochondrial loci. Syst Biol 51:930–945

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary tree from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J, Kishino H (1993) Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst Biol 42:193–200

    Article  Google Scholar 

  • Guan X, Geng T, Silva P, Smith EJ (2007) Mitochondrial DNA sequence and haplotype variation analysis in the chicken (Gallus gallus). J Hered 98:723–726

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Silva P, Gyenai KB, Xu J, Geng T, Tu Z, Samuels DC, Smith EJ (2008) The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo. Anim Genet 40:134–141

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Herrnstadt C, Howell N (2004) An evolutionary perspective on pathogenic mtDNA mutations: haplogroup associations of clinical disorders. Mitochondrion 4:791–798

    Article  CAS  PubMed  Google Scholar 

  • Jarvis E et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamara D, Gyenai KB, Geng T, Hammade H, Smith EJ (2007) Microsatellite marker-based genetic analysis of relatedness between commercial and heritage turkey (Meleagris gallopavo). Poult Sci 86:46–49

    Article  CAS  PubMed  Google Scholar 

  • Kennamer JE, Kennamer M, Brenneman R (1992) History. In: Dickson JG (ed) Wild Turkey: Biology and Management. Stackpole Books, Mechanicsburg, pp 6–17

    Google Scholar 

  • Li S, Aggrey SE, Zadworny D, Fairfull W, Kuhnlein U (1998) Evidence for a genetic variation in mitochondrial genome affecting traits in White Leghorn chickens. J Hered 89:222–226

    Article  CAS  PubMed  Google Scholar 

  • Lin KC, Xu J, Gyenai KB, Pyle R, Smith EJ (2006) Candidate gene expression analysis of toxin-induced dilated cardiomyopathy in the turkey, Meleagris gallopavo. Poult Sci 85:2216–2221

    Article  CAS  PubMed  Google Scholar 

  • Lucchini V, Hoglund J, Klaus S, Swenson J, Randi E (2001) Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan. Mol Phylogenet Evol 20:149–162

    Article  CAS  PubMed  Google Scholar 

  • Mock KE, Theimer TC, Wakeling BF, Rhodes OE Jr, Greenberg DL, Keim P (2001) Verifying the origins of a reintroduced population of Gould’s wild turkey. J Wildl Manag 65:871–879

    Article  Google Scholar 

  • Mock KE, Theimer TC, Rhodes OE Jr, Greenberg DL, Keim P (2002) Genetic variation across the historical range of the wild turkey (Meleagris gallopavo). Mol Ecol 11:643–657

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Niu D, Fu Y, Luo J, Ruan H, Yu X, Chen G, Zhang Y (2002) The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet 40:163–174

    Article  CAS  PubMed  Google Scholar 

  • Posada D (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojas M, González I, Pavón MÁ, Pegels N, Hernández PE, García T, Martín R (2010) Mitochondrial and nuclear markers for the authentication of partridge meat and the specific identification of red-legged partridge meat products by polymerase chain reaction. Poult Sci 90:211–222

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Smith EJ, Geng T, Long E, Pierson FW, Sponenberg DP, Larson C, Gogal R (2005) Molecular analysis of relatedness of five domesticated turkey strains. Biochem Genet 43:35–47

    Article  CAS  PubMed  Google Scholar 

  • Speller CF, Kemp BM, Wyatt SD, Monroe C, Lipe WD, Arndt UM, Yang DY (2010) Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication. Proc Natl Acad Sci USA 10:2807–2812

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0. Sinauer Associates, Sunderland, Massachusetts

  • Szalanski AL, Church KE, Oates DW (2000) Mitochondrial-DNA variation within and among wild turkey (Meleagris gallopavo) subspecies. Trans Nebr Acad Sci Affil Soc Lincoln, NE

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol Evol 11:158–162

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31:5338–5348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Jarvis ED, Gilbert MT (2014) Avian genomes. A flock of genomes. Introduction. Science 346:1308–1309

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Olin Rhodes, Purdue University, for DNA from some wild turkeys and to Dr. Jake Tu, Biochemistry Department, Virginia Tech, for help with the phylogenetic analyses. Funding for this work was provided in part by Virginia Tech, the National Institutes of Aging, National Institutes of Health, and National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Silva, P., Gyenai, K. et al. Mitochondrial DNA-Based Analyses of Relatedness Among Turkeys, Meleagris gallopavo . Biochem Genet 53, 29–41 (2015). https://doi.org/10.1007/s10528-015-9668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-015-9668-y

Keywords

Navigation