Skip to main content
Log in

Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Bacillus subtilis IAGS174 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the present investigation, the resistance-inducing determinant was isolated from cell-free culture filtrates (CFCF) of this bacterium. For this purpose, CFCF was extracted by a series of organic solvents, and the fraction that showed induced systemic resistance (ISR) activity was further partitioned into sub-fractions by column chromatography by using a stepwise elution method. Gas chromatography/mass spectrometry analysis identified four compounds in the ISR-active sub-fraction viz. eugenol, 3-methoxy butyl acetate, pentachloroaniline and phthalic acid methyl ester (PAME). Subsequent bioassays proved that PAME is the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.01 and 0.1 mM. Furthermore, compared to the respective controls, tomato plants treated with PAME showed increased activities of defense-related enzymes such as phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase. Our research indicates that B. subtilis IAGS174 has great potential for use as a biological control agent, and PAME is the ISR determinant secreted by this bacterium into the rhizosphere. This determinant can effectively trigger defense responses in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akram W, Anjum T, Ali B, Ahmad A (2013) Screening of native bacillus strains to induce systemic resistance in tomato plants against Fusarium wilt in split root system and its field applications. Int J Agric Biol 15:1289–1294

    Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  • Bai R, Ma F, Liang D, Zhao X (2009) Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol 35:488–494

    Article  CAS  PubMed  Google Scholar 

  • Bakker P, Ran LX, Pieterse CMJ, van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Baysal O, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger-signals by pattern recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bozsó Z, Ott PG, Szamári Á, Zelleng ÁC, Varga G, Besenyei E, Sardi E, Banyei E, Klement Z (2005) Early detection of bacterium-induced basal resistance in tobacco leaves with diaminobenzidine and dichlorofluorescein diacetate. J Phytopathol 153:596–607

    Article  Google Scholar 

  • Budzikiewicz H (2004) Bacterial catecholate siderophores. Mini-Rev Org Chem 1:163–168

    Article  CAS  Google Scholar 

  • Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cachinero JM, Hervas A, Jimenez-Diaz RM, Tena M (2002) Plant defence reactions against Fusarium wilt in chickpea induced by incompatible race 0 of Fusarium oxysporum f. sp. ciceris and non-host isolates of F. oxysporum. Plant Pathol 51:765–776

    Article  Google Scholar 

  • Conrath U (2009) Priming of induced plant defence responses. In: van Loon LC (ed) Plant innate immunity. Elsevier, Burlington, USA, pp 361–395

    Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo-Maria J, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dempsey DA, Klessig DF (1995) Signals in plant disease resistance. Bull Inst Pasteur 93:167–186

    Article  CAS  Google Scholar 

  • De Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa  7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

  • De Meyer G, Hofte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

  • Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxy cinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • El-Mehalawy AA, Gebreel HM, Rifaat HM, El-Kholy IM, Humid AA (2008) Effect of antifungal compounds produced by certain bacteria on physiological activities of human and plant pathogenic fungi. J Appl Sci Res 4(4):425–432

    CAS  Google Scholar 

  • Epp D (1987) Somaclonal variation in banana: a case study with Fusarium wilt. In: Persley GJ, De Langhe EA (eds) Banana and plantain breeding strategies. ACIAR Publication, Canberra, Australia, pp 140–150

    Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Vásquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM (2004) Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves. Ann Bot 94:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hao R, Lu A, Wang G (2004) Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can J Microbiol 50(3):175–182

    Article  CAS  PubMed  Google Scholar 

  • Ignacimuthu S (1997) Inhibitory effect of allelopathic substances from floral parts of Delonix regia (Boj) Raf. Proc Indian Natan Sci Acad 63:537–544

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Tsuda K (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  PubMed  Google Scholar 

  • Leeman M, Den Ouden EM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E, Shaul RB (1965) Assay of catechol oxidase a critical comparison of methods. Phytochemistry 5:783–789

    Article  Google Scholar 

  • Meziane H, van der Sluis I, van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Mishra AK, Sharma K, Misra RS (2009) Purification and characterization of elicitor protein from Phytophthora colocasia and basic resistance in Colocasia esculenta. Microbiol Res 164:688–693

    Article  CAS  PubMed  Google Scholar 

  • Montensano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:173–179

    Google Scholar 

  • Neill SJ, Desikan D, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Schafer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

  • Park SW, Vlot AC, Klessig DF (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  PubMed  Google Scholar 

  • Park MR, Kim YC, Lee S, Kim IS (2009) Identification of an ISR-related metabolite produced by rhizobacterium Klebsiella oxytoca C1036 active against soft-rot disease pathogen in tobacco. Pest Manag Sci 65(10):1114–1117

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Spaccini R, Chiarella M (2003) Effects of some dicarboxylic acids on the association of dissolved humic substances. Biol Fertil Soils 37:255–259

    CAS  Google Scholar 

  • Pina A, Errea P (2008) Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J Plant Physiol 165:705–714

    Article  CAS  PubMed  Google Scholar 

  • Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallmann J, Sikora RA (2002) Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology 4:73–79

    Article  CAS  Google Scholar 

  • Rohilla R, Singh US, Singh RL (2002) Mode of action of acibenzolar-S-methyl against sheath blight of rice, caused by Rhizoctonia solani Kuhn. Pest Manag Sci 58:63–69

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100:14577–14580

  • Sani UM, Pateh UU (2009) Isolation of 1,2-benzenedicarboxylic acid bis(2-ethylhexyl) ester from methanol extract of the variety minor seeds of Ricinus communis Linn. (Euphorbiaceae). Nig J Pharm Sci 8:107–114

    Google Scholar 

  • Schreiber K, Desveaux D (2008) Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol J 24(3):245–268

    Article  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem FV, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464

    Article  CAS  PubMed  Google Scholar 

  • Somssica IE, Hahlbrock K (1998) Pathogen defence in plants—a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Article  Google Scholar 

  • Song W, Ma X, Tan H, Zhou J (2011) Abscisic acid enhances resistance to Alternaria solani in tomato seedling. Plant Physiol Biochem 49:693–700

    Article  CAS  PubMed  Google Scholar 

  • Sumayo M, Hahm MS, Ghim Y (2013) Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in tobacco leaves. Plant Pathol J 29:174–181

    Article  PubMed Central  PubMed  Google Scholar 

  • Tosi L, Zazzerini A (2000) Interactions between Plasmopara helianthi, Glomus mosseae and two plant activators in sunflower plants. Eur J Plant Pathol 106:735–744

    Article  CAS  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413

    Article  CAS  Google Scholar 

  • van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417R induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Forman’s Christian College, Lahore, Pakistan for providing us assistance to perform GCMS analysis. We are also thankful to First Fungal Culture Bank of Pakistan for providing microbial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waheed Akram.

Additional information

Handling Editor: Monica Hofte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, W., Anjum, T. & Ali, B. Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. BioControl 60, 271–280 (2015). https://doi.org/10.1007/s10526-014-9636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9636-1

Keywords

Navigation