Skip to main content

Advertisement

Log in

Differential expression of elastic fibre components in intrinsically aged skin

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Intrinsic ageing of the skin is a subtle process resulting in some degree of skin laxity. The dermal elastic fibre network imbues skin with the capacity to recoil and loss of this property contributes to an aged, wrinkled appearance. Whilst elastic fibres have a complex, composite structure which allows them to fulfil multiple roles, the effects of intrinsic ageing on their discrete molecular components has not previously been explored. In this study, we have used a microarray-based approach to perform a novel survey of the changes in gene expression that occur in components of cutaneous elastic fibres as a result of intrinsic ageing. Age-related changes in gene expression were validated at the mRNA and protein levels using quantitative real-time polymerase chain reaction (qPCR) and immunostaining, respectively. The microarray revealed that the majority of elastic fibre network components were unchanged with age. However, three differentially expressed genes were identified: latent TGFβ-binding protein (LTBP)-2 which was up-regulated with age (fold change +1.58, P = 0.041); LTBP3 (fold change −1.67, P = 0.025) and the lysyl oxidase-like enzyme (LOXL1, fold change −1.47, P = 0.008) which were both down-regulated with age. Although the changes in gene expression for LTBP3 were not confirmed by either qPCR or immunostaining, the expression and tissue deposition of both LTBP2 and LOXL1 were significantly enhanced in intrinsically aged skin. Whilst the functional implications of these altered expression profiles remains to be elucidated, LTBP2 and LOXL1 are thought to play important roles in controlling and maintaining elastic fibre deposition, assembly and structure via binding to fibulin-5. Consequently, any age-related perturbations in the expression of these components may have important consequences on remodelling of the extracellular matrix and hence on the mechanical properties of intrinsically aged skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

bp:

Base pair

DAPI:

4′-6-Diamidino-2-phenylindole

DEJ:

Dermal-epidermal junction

GC-RMA:

GeneChip-Robust Multiarray Averaging

LOX:

Lysyl oxidase

LOXL:

Lysyl oxidase-like

LTBP:

Latent transforming growth factor-β binding protein

qPCR:

Quantitative real-time polymerase chain reaction

TBS:

Tris-buffered saline

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image. J. Biophotonics International 11:36–42

    Google Scholar 

  • Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM (1999) Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 340(Pt 1):171–181

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  PubMed  CAS  Google Scholar 

  • Braverman IM, Fonferko E (1982) Studies in cutaneous aging: I. The elastic fiber network. J Invest Dermatol 78(5):434–443

    Article  PubMed  CAS  Google Scholar 

  • Cotta-Pereira G, Guerra Rodrigo F, Bittencourt-Sampaio S (1976) Oxytalan, elaunin, and elastic fibers in the human skin. J Invest Dermatol 66(3):143–148

    Article  PubMed  CAS  Google Scholar 

  • Davis EC (1993) Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100(1):17–26

    Article  PubMed  CAS  Google Scholar 

  • Ernster VL, Grady D, Miike R, Black D, Selby J, Kerlikowske K (1995) Facial wrinkling in men and women, by smoking status. Am J Public Health 85(1):78–82

    Article  PubMed  CAS  Google Scholar 

  • Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG (1989) Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 93(3):353–357

    Article  PubMed  CAS  Google Scholar 

  • Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379(6563):335–339. doi:10.1038/379335a0

    Article  PubMed  CAS  Google Scholar 

  • Giangreco A, Goldie SJ, Failla V, Saintigny G, Watt FM (2010) Human skin aging is associated with reduced expression of the stem cell markers beta1 integrin and MCSP. J Invest Dermatol 130(2):604–608. doi:10.1038/jid.2009.297

    Article  PubMed  CAS  Google Scholar 

  • Gibson MA, Hatzinikolas G, Davis EC, Baker E, Sutherland GR, Mecham RP (1995) Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils. Mol Cell Biol 15(12):6932–6942

    PubMed  CAS  Google Scholar 

  • Giltay R, Kostka G, Timpl R (1997) Sequence and expression of a novel member (LTBP-4) of the family of latent transforming growth factor-beta binding proteins. FEBS Lett 411(2–3):164–168

    Article  PubMed  CAS  Google Scholar 

  • Hirai M, Horiguchi M, Ohbayashi T, Kita T, Chien KR, Nakamura T (2007) Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber assembly. EMBO J 26(14):3283–3295. doi:10.1038/sj.emboj.7601768

    Article  PubMed  CAS  Google Scholar 

  • Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 26(4):213–223. doi:10.1016/j.matbio.2006.12.006

    Article  PubMed  CAS  Google Scholar 

  • Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153(3):607–612. doi:10.1111/j.1365-2133.2005.06716.x

    Article  PubMed  CAS  Google Scholar 

  • Kadunce DP, Burr R, Gress R, Kanner R, Lyon JL, Zone JJ (1991) Cigarette smoking: risk factor for premature facial wrinkling. Ann Intern Med 114(10):840–844

    PubMed  CAS  Google Scholar 

  • Kafi R, Kwak HS, Schumacher WE, Cho S, Hanft VN, Hamilton TA, King AL, Neal JD, Varani J, Fisher GJ, Voorhees JJ, Kang S (2007) Improvement of naturally aged skin with vitamin A (retinol). Arch Dermatol 143(5):606–612. doi:10.1001/archderm.143.5.606

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Claesson-Welsh L, Heldin CH (1990) TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell 61(6):1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Woolley DE, Whittaker SP, Shuttleworth CA (1994) Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Lett 351(1):85–89

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115(Pt 14):2817–2828

    PubMed  CAS  Google Scholar 

  • Langton AK, Sherratt MJ, Griffiths CEM, Watson REB (2010) A new wrinkle on old skin: the role of elastic fibres in skin ageing. Int J Cosmet Sci. doi:10.1111/j.1468-2494.2010.00574.x

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31–36. doi:10.1073/pnas.011404098

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36(2):178–182. doi:10.1038/ng1297

    Article  PubMed  CAS  Google Scholar 

  • Mecham RP, Davis EC (1994) Elastic fiber structure and assembly. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, New York, pp 281–314

    Google Scholar 

  • Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461. doi:10.1016/S0065-3233(05)70013-9

    Article  PubMed  CAS  Google Scholar 

  • Montagna W, Carlisle K (1979) Structural changes in aging human skin. J Invest Dermatol 73(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Moren A, Olofsson A, Stenman G, Sahlin P, Kanzaki T, Claesson-Welsh L, ten Dijke P, Miyazono K, Heldin CH (1994) Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem 269(51):32469–32478

    PubMed  CAS  Google Scholar 

  • Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415(6868):171–175. doi:10.1038/415171a

    Article  PubMed  CAS  Google Scholar 

  • Noblesse E, Cenizo V, Bouez C, Borel A, Gleyzal C, Peyrol S, Jacob MP, Sommer P, Damour O (2004) Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J Invest Dermatol 122(3):621–630. doi:10.1111/j.0022-202X.2004.22330.x

    Article  PubMed  CAS  Google Scholar 

  • Saharinen J, Keski-Oja J (2000) Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 11(8):2691–2704

    PubMed  CAS  Google Scholar 

  • Saharinen J, Taipale J, Monni O, Keski-Oja J (1998) Identification and characterization of a new latent transforming growth factor-beta-binding protein, LTBP-4. J Biol Chem 273(29):18459–18469

    Article  PubMed  CAS  Google Scholar 

  • Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87(5):1828–1834. doi:10.1172/JCI115204

    Article  PubMed  CAS  Google Scholar 

  • Sherratt MJ (2009) Tissue elasticity and the ageing elastic fibre. Age (Dordr) 31(4):305–325. doi:10.1007/s11357-009-9103-6

    Article  CAS  Google Scholar 

  • Sherratt MJ, Bayley CP, Reilly SM, Gibbs NK, Griffiths CE, Watson RE (2010) Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. J Pathol 222(1):32–40. doi:10.1002/path.2730

    PubMed  CAS  Google Scholar 

  • Shipley JM, Mecham RP, Maus E, Bonadio J, Rosenbloom J, McCarthy RT, Baumann ML, Frankfater C, Segade F, Shapiro SD (2000) Developmental expression of latent transforming growth factor beta binding protein 2 and its requirement early in mouse development. Mol Cell Biol 20(13):4879–4887

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445. doi:10.1073/pnas.1530509100

    Article  PubMed  CAS  Google Scholar 

  • Uitto J (1979) Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol 72(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Watson REB, Griffiths CEM, Craven NM, Shuttleworth CA, Kielty CM (1999) Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J Invest Dermatol 112(5):782–787. doi:10.1046/j.1523-1747.1999.00562.x

  • Watson REB, Craven NM, Kang S, Jones CJ, Kielty CM, Griffiths CEM (2001) A short-term screening protocol, using fibrillin-1 as a reporter molecule, for photoaging repair agents. J Invest Dermatol 116(5):672–678. doi:10.1046/j.1523-1747.2001.01322.x

    Article  PubMed  CAS  Google Scholar 

  • White CA, Salamonsen LA (2005) A guide to issues in microarray analysis: application to endometrial biology. Reproduction 130(1):1–13. doi:10.1530/rep.1.00685

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. Working Papers, Department of Biostatistics, John Hopkins University

  • Yin W, Smiley E, Germiller J, Mecham RP, Florer JB, Wenstrup RJ, Bonadio J (1995) Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP-3). J Biol Chem 270(17):10147–10160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jean Bastrilles, Gill Aarons and June Bowden for recruitment of volunteers and the University of Manchester Genomic Technologies Core Facility (formerly Microarray Core Facility). This work was supported by a programme grant from Alliance Boots, Nottingham, UK and by a Senior Age UK Fellowship awarded to MJS. CEMG is supported in part by the NIHR Manchester Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail K. Langton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langton, A.K., Sherratt, M.J., Griffiths, C.E.M. et al. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology 13, 37–48 (2012). https://doi.org/10.1007/s10522-011-9332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9332-9

Keywords

Navigation