Skip to main content
Log in

Distal oviduct and genital chamber of eriophyoids (Acariformes, Eriophyoidea): refined terminology and remarks on CLSM technique for studying musculature of mites

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The general morphology of cuticle-lined internal genitalia and oviduct is analyzed in intact females of the phytophagous mites, Loboquintus subsquamatus and Trisetacus cf bagdasariani (Acari: Eriophyoidea) using tetramethylrhodamine B isothiocyanate-phalloidin, three anaesthetics (magnesium sulphate, lidocaine and CO2-enriched water) and confocal laser scanning microscopy (CLSM). This is the first protocol adopted for CLSM studying musculature of mites. Revision of the previous terminology of eriophyoid internal genitalia from Nuzzaci and Alberti (Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 101–150, 1996) resulted in the refinement of the terms “distal oviduct”, “genital chamber” and “spermatheca”. Relative position of the elements of cuticle-lined internal genitalia is discussed and a generalized 3D model and animation (available on-line as supplementary material) of eriophyoid genital apparatus are provided. The wall of eriophyoid oviduct contains strong longitudinal muscles attached to the cuticle genital chamber with folded walls. When the egg is being extruded by contraction of the oviduct muscles, it forms lobes corresponding to the internal topography of the oviduct and genital chamber; these lobes invaginate inward from the gonopore, resulting in the “flower-shaped” figures rarely observed in slide-mounted mites. Gnathosomal muscles (cheliceral muscles and extrinsic muscles of palps) and opisthosomal muscles D1 of Loboquintus mites are attached to the three posterior depressions near the rear prodorsal shield margin. Prospects of CLSM approach for studying different aspects of mite morphology are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. These data are quite extensive and need to be analyzed separately, which is beyond the scope of this paper.

  2. The same image was given earlier by Nuzzaci and Solinas (1984, Fig. 9, p. 500) with similar indication of the distal oviduct.

  3. As it was mentioned by Nuzzaci and Alberti (1996, p. 138) the term vagina (and bursa copulatrix as well) is not appropriate in eriophyoids “…insemination occurs by indirect spermatophore transfer”.

  4. Mentioned as “ductus spermathecae” and abbreviated as “DS” in Nuzzaci and Solinas (1984, p. 491).

References

  • Amrine JW Jr, Stasny TA, Flechtmann CHW (2003) Revised keys to the world genera of the Eriophyoidea (Acari: Prostigmata). Indira Publ House, Michigan

    Google Scholar 

  • Bagnyuk IG (1984) Novij chetirekhnogij kleshch (Acarina, Tetrapodili) iz pochek pikhti sibirskoi [A new bud mite (Acarina, Tetrapodili) the pest of the Siberian fir (Abies sibirica)]. Zoologicheskiy Zhurnal 63(3):373–381

    Google Scholar 

  • Barnett AA, Thomas RH (2013) The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev 15:280–292. doi:10.1111/ede.12038

    Article  CAS  PubMed  Google Scholar 

  • Becker C, Türkay M, Brandis D (2012) The male copulatory system of European pea crabs. J Morphol 272(1):12–26. doi:10.1002/jmor.20065

    Article  Google Scholar 

  • Boczek J (1964) Studies on eriophyid mites of Poland III. Annales Zoologici Polska Akademia Nauk 22(11):221–236

    Google Scholar 

  • Bulantová J, Chanová M, Hoǔzvǐcková L, Horák P (2011) Trichobilharzia regenti (Digenea: Schistosomatidae): changes of body wall musculature during the development from miracidium to adult worm. Micron 42:47–54. doi:10.1016/j.micron.2010.08.003

    Article  PubMed  Google Scholar 

  • Camerik AM, Coetzee SH (1998) Phoretic females of two new species of the genus Pediculaster (Acari: Pygmephoridae) from cattle dung in South Africa. Int J Acarol 24(1):21–31. doi:10.1080/01647959808684123

    Article  Google Scholar 

  • Chetverikov PE (2011) Phytoptus atherodes n. sp. (Acari: Eriophyoidea: Phytoptidae) and a supplementary description of Phytoptus hirtae Roivainen 1950 from sedges (Cyperaceae). Zootaxa 3045:26–44

    Google Scholar 

  • Chetverikov PE (2012) Confocal laser scanning microscopy technique for the study of internal genitalia and external morphology of Eriophyoid mites (Acari: Eriophyoidea). Zootaxa 3453:56–68

    Google Scholar 

  • Chetverikov PE (2014) Comparative confocal microscopy of internal genitalia of phytoptine mites (Eriophyoidea, Phytoptidae): new generic diagnoses reflecting host–plant associations. Exp Appl Acarol 62(2):129–160. doi:10.1007/s10493-013-9734-2

    Article  PubMed  Google Scholar 

  • Chetverikov PE, Beaulieu F, Cvrković T, Vidović B, Petanović R (2012a) Oziella sibirica (Eriophyoidea: Phytoptidae), a new eriophyoid mite species described using confocal microscopy and COI barcoding. Zootaxa 3560:41–60

    Google Scholar 

  • Chetverikov PE, Cristofaro M, de Lillo E, Petanović RU, Shaffner U, Vidovic B (2012b) New taxonomical data on Aceria acroptiloni (Acari, Eriophyoidea), a potential biological control agent of the weed Acroptilon repens. In: Dimitriev AV, Egorov LV, Sinichkin EA (eds) Proceedings of the II international conference to commemorate professor M.A. Kozlov “Modern zoological studies in Russia and adjacent countries” Novoye vremya Press, Cheboksary 2012, pp 158–159

  • Chetverikov PE, Cvrković T, Vidović B, Petanović RU (2013) Description of a new relict eriophyoid mite, Loboquintus subsquamatus n. gen. & n. sp. (Eriophyoidea, Phytoptidae, Pentasetacini) based on confocal microscopy, SEM, COI barcoding and novel CLSM anatomy of internal genitalia. Exp Appl Acarol 61(1):1–30. doi:10.1007/s10493-013-9685-7

    Article  PubMed  Google Scholar 

  • Chetverikov PE, Beaulieu F, Belyavskaya A, Rautian MS, Sukhareva SI (2014) Confocal microscopy and new genitalic characters: integrative redescription of a relict mite, Pentasetacus araucariae (Eriophyoidea, Phytoptidae). Exp Appl Acarol 63(2):123–155

    Article  PubMed  Google Scholar 

  • Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52(2):196–204

    Article  CAS  PubMed  Google Scholar 

  • Dobrivojevic K, Petanovic R (1982) Fundamentals of acarology. Slovo Ljubve, Belgrade (in Serbian)

    Google Scholar 

  • Douaihy B, Chetverikov PE, Machon N, Dagher-Kharrat MB (2013) Eriophyoid mite of the genus Trisetacus reported on Juniperus excelsa in Lebanon. AJPS 4:395–399. doi:10.4236/ajps.2013.42A051

    Article  Google Scholar 

  • Faulstich H, Trischmann H, Mayer D (1983) Preparation of tetramethylrhodaminyl-phalloidin and uptake of the toxin into short-term cultured hepatocytes by endocytosis. Exp Cell Res 144(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Gledall IG (2013) The effects of prospective anaesthetic substances on cephalopods: summary of original data and brief review of studies over the last two decades. J Exp Mar Biol Ecol 447:23–30

    Article  Google Scholar 

  • Halberg KA, Persson D, Møbjerg N, Wanninger A, Kristensen RM (2009) Myoanatomy of the marine tardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). J Morphol 1013:996–1013. doi:10.1002/jmor.10734

    Article  Google Scholar 

  • Keifer HH (1962) Eriophyid studies B-7. Bureau of Entomology, California Department of Agriculture, pp 1–20

  • Keifer HH (1975) Eriophyoidea Nalepa. Chapter 12. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University of California Press, California, pp 327–396

    Google Scholar 

  • Kirejtshuk AG, Chetverikov PE and Azar D (2014) Libanopsinae, new subfamily of the family Sphindidae (Coleoptera, Cucujoidea) from Lower Cretaceous Lebanese amber, with remarks on using confocal microscopy for the study of amber inclusions. Cretac Res. doi:10.1016/j.cretres.2014.02.008

  • Kovalev OV, Shevchenko VG, Danilov LG (1974) Aceria acriptiloni sp. n. (Acarina, Tetrapodili), a promising phytophage for the biological control of Russian knapweed (Acroptilon repens (L.) DC.). Entomological Review 53(2):25–34

    Google Scholar 

  • Krupenko DY (2011) Spatial organization of musculature in the Himasthla elongata cercaria (Trematoda: Echinostomatidae). Parazitologiia 45(6):449–460

    PubMed  Google Scholar 

  • Leasi F, Ricci C (2010) Musculature of two bdelloid rotifers, Adineta ricciae and Macrotrachela quadricornifera: organization in a functional and evolutionary perspective. J Zool Syst Evol Res 48(1):33–39. doi:10.1111/j.1439-0469.2009.00538.x

    Article  Google Scholar 

  • Lindquist EE (1996) Phylogenetic relationships. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 301–327

    Google Scholar 

  • Matsubara T, Ohta Y, Ehara S (1992) Fine structure of female and male internal reproductive organs in a spider mite Tetranychina harti (Ewing)(Acari: Tetranychidae). Appl Entomol Zool 27(1):65–78

    Google Scholar 

  • Matsuda R (1976) Morphology and evolution of the insect abdomen. Frankfurt, Oxford

    Google Scholar 

  • Melnikov KN, Vislobokov AI (2004) Influence of bupivacaine and lidocaine on ionic channels of mollusk isolated neurons. Psychopharmacol Biol Narcol 4(2–3):638–644

    Google Scholar 

  • Müller MCM, Schmidt-Rhaesa A (2003) Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM. J Morphol 256(2):103–110

    Article  PubMed  Google Scholar 

  • Müller MCM, Sterrer W (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and CLSM, and their phylogenetic significance. Zoomorphology 123(3):169–177. doi:10.1007/s00435-004-0099-2

    Article  Google Scholar 

  • Nalepa A (1887) Die Anatomie der Phytopten. Sitzb Akad Wein 96:114–165

    Google Scholar 

  • Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 101–150

    Google Scholar 

  • Nuzzaci G, Solinas M (1984) An investigation into sperm formation, transfer, storage, and utilization in eriophyid mites. In: Griffiths DA, Bowman CE (eds) Acarology 6(1):491–503

  • Podolak-Machowska A, Kostecka J, Librowski T, Plytycz B (2013) The use of selected anaesthetic drugs in search of a method for improving earthworms’ welfare. J Ecol Eng 14(3):83–88

    Article  Google Scholar 

  • Polilov AA, Beutel RG (2009) Arthropod structure and development miniaturisation effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. Arthropod Struct Dev 38(3):247–270. doi:10.1016/j.asd.2008.11.003

    Article  PubMed  Google Scholar 

  • Popp E (1967) Die Begattung bei den Vogelmilben Pterodectes Robin (Analgesoidea, Acari). Z Morph Ökol Tiere 59:1–32

    Article  Google Scholar 

  • Shevchenko VG (1962) Novii chetirekhnogij kleshch Trisetacus kirghizorum sp. n. (Acarina, Eriophyidae) vreditel semjan arci. Trudi Kirghizskoj Lesnoj Opytnoj Stantzii 3:299–305

    Google Scholar 

  • Shevchenko VG (1986) Musculature of Tetrapodili (Acariformes) and the problem of their segmental structure. Entomol Rev 65:833–843

    Google Scholar 

  • Sørensen MV, Funch P, Hooge M, Tyler S (2003) Musculature of Notholca acuminata (Rotifera: Ploima: Brachionidae) revealed by confocal scanning laser microscopy. Invertebr Biol 122(3):223–230

    Article  Google Scholar 

  • Stekolnikov AA (2008) Morphological principles of musculature evolution in insects. St Petersburg University, St Petersburg

    Google Scholar 

  • Valdecasas AG (2008) Confocal microscopy applied to water mite taxonomy with the description of a new genus of Axonopsinae (Acari, Parasitengona, Hydrachnidia) from Central America. Zootaxa 1820:41–48

    Google Scholar 

  • Valdecasas AG, Abad A (2011) Morphological confocal microscopy in arthropods and the enhancement of auto fluorescence after proteinase K extraction. Microsc Microanal 17:109–113

    Article  CAS  PubMed  Google Scholar 

  • van Wijk M, Wadman WJ, Sabelis MW (2006a) Gross morphology of the central nervous system of a phytoseiid mite. Exp Appl Acarol 40(3–4):205–216

    Article  PubMed  Google Scholar 

  • van Wijk M, Wadman WJ, Sabelis MW (2006b) Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis. Exp Appl Acarol 40(3–4):217–229

    Article  PubMed  Google Scholar 

  • Vasilieva EA, Mitrofanov VI, Sekerskaya NP, Sharonov AA (1982) Chetyrekhnogie kleshchi hvoinykh porod Kryma [Four-legged mites of the Crimean conifers (Acari: Eriophyoidea)]. Trudy gosudarstvennogo Nikitskogo botanicheskogo sada 87:7–21

    Google Scholar 

  • Walter DE (2005 onwards) Glossary of acarine terms. In Walter DE (2006) Lucid 3.3 (platform independent): Invasive mite identification: tools for quarantine and plant protection. Colorado State University, Ft. Collins, CO and USDA/APHIS/PPQ Center for Plant Health Science and Technology, Raleigh, NC. http://itp.lucidcentral.org/id/mites/invasive_mite/Invasive_Mite_Identification/key/Whole_site/Home_whole_key.html

  • Witaliński W (1993) Egg shells in mites: vitelline envelope and chorion in Acaridida (Acari). Exp Appl Acarol 17(5):321–344

    Article  Google Scholar 

  • Witaliński W, Szlendak E, Boczek J (1990) Anatomy and ultrastructure of the reproductive systems of Acarus siro (Acari: Acaridae). Exp Appl Acarol 10(1):1–31

    Article  PubMed  Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Weiland Th (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. PNAS 76(9):4498–4502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I sincerely thank Prof. James W. Amrine (West Virginia University, Morgantown, USA), Prof. Enrico de Lillo and Prof. Emeritus Giorgio Nuzzaci (University of Bari, Italy) and Prof. Radmila U. Petanović (University of Belgrade, Serbia) for their critical comments on earlier drafts of manuscript and pertinent on-line discussions on eriophyoid anatomy and taxonomy. I am grateful to the anonymous reviewers for their comments. This study was supported by Russian Science Foundation (RSCF Grant #14-14-00621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp E. Chetverikov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 127818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverikov, P.E. Distal oviduct and genital chamber of eriophyoids (Acariformes, Eriophyoidea): refined terminology and remarks on CLSM technique for studying musculature of mites. Exp Appl Acarol 64, 407–428 (2014). https://doi.org/10.1007/s10493-014-9840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9840-9

Keywords

Navigation