Skip to main content

Advertisement

Log in

A CMOS front-end for RFID transponders using multiple coil antennas

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A front-end architecture for inductive RFID transponders using multiple coil antennas for reduced orientation sensitivity is presented. The front-end uses multiple antennas for reception and one antenna for transmission. A select function identifies the antenna that is most favorably oriented toward the reader for transmission by comparing the DC charge-up phases of multiple DC generation blocks during power-up of the transponder. Design, simulations and measurement results of a front-end manufactured in 0.35 \(\upmu\)m CMOS for 125 kHz FSK modulation are presented for a pulsed RFID system as well as an architecture for cascaded DC generation. This paper also includes a design example of a coil antenna for spherical transponders using three independent orthogonal windings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The possibility to use threshold cancellation technique in the MOS diodes to improve rectifier efficiency [22], has not been further studied as it is beyond the scope of this paper.

References

  1. Kvarnström, B., & Vanhatalo, E. (2010). Using RFID to improve traceability in process industry: Experiments in a distribution chain for iron ore pellets. Journal of Manufacturing Technology Management, 21(1), 139–154.

    Article  Google Scholar 

  2. Rabe, J. (2005). Development of a RF tracer for use in the mining and minerals processing industry. In Proceedings of the Third Southern African Conference on Base Metals, pp. 107–126.

  3. D’Mello, S., Mathews, E., McCauley, L., & Markham, J. (2008). Impact of position and orientation of RFID tags on real time asset tracking in a supply chain. Journal of Theoretical and Applied Electronic Commerce Research, 3(1), 1–12.

  4. Nikitin, P.V., & Rao, K.V.S. (2007). Performance of RFID tags with multiple RF ports. In: Proceedings of the IEEE International Symposium Antennas and Propagation, pp. 5459–5462. IEEE

  5. Tran, A., Bolic, M., & Yagoub, M. C. E. (2010). Magnetic-field coupling characteristics of ferrite-coil antennas for low-frequency RFID applications. International Journal of Computer Science Issues, 7(4), 7–11.

  6. Kholodnyak, D., Turalchuk, P., Mikhailov, A., Dudnikov, S., & Vendik, I. (2006). 3D antenna for UHF RFID tags with eliminated read-orientation sensitivity. In: Proceedings of the Microwave Conference, 36th European, pp. 583–586. IEEE

  7. Wang, L., Norman, B., & Rajgopal, J. (2007). Placement of multiple RFID reader antennas to maximise portal read accuracy. International Journal of Radio Frequency Identification Technology and Applications, 1(3), 260–277.

    Article  Google Scholar 

  8. Finkenzeller, K., & Handbook, R. F. I. D. (2003). Fundamentals and Applications in Contactless Smart Cards and Identification (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  9. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. Communications Magazine IEEE, 42(10), 68–73.

    Article  Google Scholar 

  10. Duan, D., & Friedman, D. (2001). Cascaded DC voltages of multiple antenna RF tag front-end circuits, US Patent 6243013.

  11. Kvarnström, B., Bergquist, B., & Vännmanab, K. (2011). RFID to improve traceability in continuous granular flows: An experimental case study. Quality Engineering, 23(4), 343–357.

    Article  Google Scholar 

  12. Van Berkel, C., & Molnar, C. (1999). Beware the three-way arbiter. IEEE Journal of Solid-State Circuits, 34(6), 840–848.

    Article  Google Scholar 

  13. Van Berkel, K., Huberts, F., & Peeters, A. (May 1995). Stretching quasi delay insensitivity by means of extended isochronic forks. In: Proceedings Second Working Conference on Asynchronous Design Methodologies, pp. 99–106. IEEE

  14. Baker, R. J. (2007). CMOS Circuit Design, Layout, and Simulation (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  15. Xu, H., & Ortmanns, M. (2011). Wide-band wide-input efficiency-enhanced CMOS rectifier with self temperature and process compensation. In: Proceedings of the Semiconductor Conference Dresden (SCD), pp. 1–4. IEEE

  16. Kaiser, U., & Steinhagen, W. (1995). Low-power transponder IC for high-performance identification systems. IEEE Journal of Solid-State Circuits, 30(3), 306–310.

    Article  Google Scholar 

  17. Steinhagen, W., & Kaiser, U. (1994). A low power read/write transponder ic for high performance identification systems. In: Proceedings of the Solid-State Circuits Conference, ESSCIRC ’94 Twentieth European, pp. 256–259. IEEE

  18. Raben, H., Borg, J., & Johansson, J. (2012). An active MOS diode with \({V}_{th}\)-cancellation for RFID rectifiers. In: Proceedings of the IEEE International Conference on RFID (RFID), 2012, pp. 54–57. IEEE

  19. Yoon, S. (2004). LC-tank CMOS voltage-controlled oscillators using high quality inductors embedded in advanced packaging technologies. Ph.D. Dissertation, Georgia Institute of Technology.

  20. Lam, Y., Ki, W., & Tsui, C. (2006). Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(12), 1378–1382.

    Article  Google Scholar 

  21. Mandal, S., & Sarpeshkar, R. (2007). Low-power CMOS rectifier design for RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1177–1188.

    Article  Google Scholar 

  22. Raben, H., Borg, J., & Johansson, J. (2012). A model for MOS diodes with \({V}_{th}\)-cancellation in RFID rectifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 99, 1–5.

    Google Scholar 

  23. Raben, H., Borg, J., & Johansson, J. (2012). A model for MOS diodes with \({V}_{th}\)-cancellation in RFID rectifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 99, 1–5.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Hjalmar Lundbohm Research Centre (HLRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Rabén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabén, H., Borg, J. & Johansson, J. A CMOS front-end for RFID transponders using multiple coil antennas. Analog Integr Circ Sig Process 83, 149–159 (2015). https://doi.org/10.1007/s10470-015-0518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0518-y

Keywords

Navigation