Skip to main content

Advertisement

Log in

Spatial and environmental factors contributing to phytoplankton biogeography and biodiversity in mountain ponds across a large geographic area

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Exploring phytoplankton biodiversity and biogeographic patterns, and the factors that control them, can help to understand the structure and function of aquatic ecosystems. We selected mountain ponds with minimal anthropogenic disturbance to reveal the biogeographic patterns of phytoplankton and to assess the influence of spatial and environmental factors on phytoplankton biodiversity. On a large regional scale, the phytoplankton communities in the mountain ponds showed geographic patterns—the community composition differed between eastern and western areas. A total of seven phyla and 73 genera were identified. Alpha diversity indices did not significantly correlate with nutrient concentrations. Environmental factors and principal coordinates of neighbour matrices together explained 28.5% of the total variation in phytoplankton community composition in the 41 ponds, with each uniquely explaining 3.0% and 14.4% of the total variation, respectively. Therefore, compared with environmental factors, spatial factors predominantly contributed to the distribution of phytoplankton across the study area. With increasing trophic status, the relative influence of spatial factors decreased, while that of environmental factors increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • APHA (2005) American Public Health Association. Standard methods for the examination of water and wastewater, USA

    Google Scholar 

  • Bai CR, Cai J, Zhou L, Jiang XY, Hu Y, Dai JY, Shao KQ, Tang XM, Yang XD, Gao G (2020) Geographic patterns of Bacterioplankton among Lakes of the Middle and Lower Reaches of the Yangtze River Basin, China. Appl Environ Microbiol 86:e02423-e2519

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F (2018) Package “betapart”. Partitioning beta diversity into turnover and nestedness components. ver, 1

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Burson A, Stomp M, Greenwell E, Grosse J, Huisman J (2018) Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99:1108–1118

    Article  PubMed  Google Scholar 

  • Carson JL, Brown RM Jr (1976) The correlation of soil algae, airborne algae, and fern spores with meteorological conditions on the Island of Hawaii. Pac Sci 30:197–205

    Google Scholar 

  • Çelekli A, Kayhan S, Çetin T (2020) First assessment of lakes’ water quality in Aras River catchment (Turkey); Application of phytoplankton metrics and multivariate approach. Ecol Indic 117:106706

    Article  Google Scholar 

  • Chen SN, He HY, Zong RR, Liu KW, Miao YT, Yan MM, Xu L (2020) Geographical patterns of algal communities associated with different urban lakes in China. Int J Environ Res Public Health 17:1009

    Article  PubMed Central  Google Scholar 

  • Chislock MF, Sharp KL, Wilson AE (2014) Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios. Water Res 49:207–214

    Article  CAS  PubMed  Google Scholar 

  • Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine–coastal ecosystems. Biogeosciences 11:2477

    Article  Google Scholar 

  • Donald DB, Bogard MJ, Finlay K, Leavitt PR (2011) Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol Oceanogr 56:2161–2175

    Article  CAS  Google Scholar 

  • Eker E, Georgieva L, Senichkina L, Kideys AE (2000) Phytoplankton distribution in the western and eastern Black Sea in spring and autumn 1995. ICES J Mar Sci 56:15–22

    Article  Google Scholar 

  • Feng C, Jia JY, Wang C, Han MQ, Dong CC, Huo B, Li DP, Liu XJ (2019) Phytoplankton and Bacterial community structure in two Chinese Lakes of different trophic status. Microorganisms 7:621

    Article  CAS  PubMed Central  Google Scholar 

  • Ferber LR, Levine SN, Lini A, Livingston GP (2004) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49:690–708

    Article  CAS  Google Scholar 

  • Glibert PM (2017) Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606

    Article  CAS  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Groendahl S, Fink P (2017) Consumer species richness and nutrients interact in determining producer diversity. Sci Rep 7:44869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CX, Zhu GW, Qin BQ, Zhang YL, Zhu MY, Xu H, Chen YW, Paerl HW (2019) Climate exerts a greater modulating effect on the phytoplankton community after 2007 in eutrophic Lake Taihu, China: evidence from 25 years of recordings. Ecol Indic 105:82–91

    Article  CAS  Google Scholar 

  • Hayes NM, Patoine A, Haig HA, Simpson GL, Swarbrick VJ, Wiik E, Leavitt PR (2019) Spatial and temporal variation in nitrogen fixation and its importance to phytoplankton in phosphorus-rich lakes. Freshw Biol 64:269–283

    Article  CAS  Google Scholar 

  • Hillebrand G, Hardenbicker P, Fischer H, Otto W, Vollmer S (2018) Dynamics of total suspended matter and phytoplankton loads in the river Elbe. J Soils Sedim 18:3104–3113

    Article  CAS  Google Scholar 

  • Hötzel G, Croome R (1999) A phytoplankton methods manual for Australian freshwaters. LWRRDC Occasional Paper 22/99

  • James RT, Havens K, Zhu GW, Qin BQ (2009) Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, PR China and Lake Okeechobee, USA). Hydrobiologia 627:211–231

    Article  CAS  Google Scholar 

  • Jensen JP, Jeppesen E, Olrik K, Kristensen P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51:1692–1699

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Kohler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Noges P, Persson G, Phillips G, Portielje R, Schelske CL, Straile D, Tatrai I, Willen E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771

    Article  CAS  Google Scholar 

  • Kim DK, Zhang WT, Rao YR, Watson S, Mugalingam S, Labencki T, Dittrich M, Morley A, Arhonditsis GB (2013) Improving the representation of internal nutrient recycling with phosphorus mass balance models: a case study in the Bay of Quinte. Ontario, Canada Ecol Model 256:53–68

    Article  CAS  Google Scholar 

  • Kosten S, Huszar VLM, Mazzeo N, Scheffer M, Sternberg LDL, Jeppesen E (2009) Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecol Appl 19:1791–1804

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology. Ver, 1.0–12

  • Lv J, Wu H, Chen M (2011) Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41:48–56

    Article  CAS  Google Scholar 

  • Mayol E, Jimenez MA, Herndl GJ, Duarte CM, Arrieta JM (2014) Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Front Microbiol 5:557

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy MJ, James RT, Chen YW, East TL, Gardner WS (2009) Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes Okeechobee (Florida, USA) and Taihu (China). Limnology 10:215–227

    Article  CAS  Google Scholar 

  • Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77

    Article  PubMed  Google Scholar 

  • Ni M, Yuan J, Liu M, Gu ZM (2018) Assessment of water quality and phytoplankton community of Limpenaeus vannamei pond in intertidal zone of Hangzhou Bay, China. Aquacult Rep 11:53–58

    Article  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    Article  CAS  Google Scholar 

  • Reynolds CS (1999) Non-determinism to probability, or N: P in the community ecology of phytoplankton. Arch Hydrobiol 146:23–35

    Article  CAS  Google Scholar 

  • Sahu N, Tangutur AD (2015) Airborne algae: overview of the current status and its implications on the environment. Aerobiologia 31:89–97

    Article  Google Scholar 

  • Schiaffino MR, Unrein F, Gasol JM, Massana R, Balague V, Izaguirre I (2011) Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshw Biol 56:1973–1991

    Article  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. P Natl Acad Sci USA 105:11254–11258

    Article  CAS  Google Scholar 

  • Scor-Unesco WG (1966) Determination of photosynthetic pigments in seawater. Determ Photosynth Pigments Sea-water 1:11–18

    Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 22:669–671

    Article  Google Scholar 

  • Striebel M, Singer G, Stibor H, Andersen T (2012) “Trophic overyielding”: phytoplankton diversity promotes zooplankton productivity. Ecology 93:2719–2727

    Article  PubMed  Google Scholar 

  • Sullivan BE, Prahl FG, Small LF, Covert PA (2001) Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic pattern? Geochim Cosmochim Acta 65:1125–1139

    Article  CAS  Google Scholar 

  • Tesson SVM, Skjøth CA, Šantl-Temkiv T, Londahl J (2016) Airborne microalgae: insights, opportunities, and challenges. Appl Environ Microbiol 82:1978–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MK, Aranguren-Gassis M, Kremer CT, Gould MR, Anderson K, Klausmeier CA, Litchman E (2017) Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob Change Biol 23:3269–3280

    Article  Google Scholar 

  • Vinçon-Leite B, Casenave C (2019) Modelling eutrophication in lake ecosystems: a review. Sci Total Environ 651:2985–3001

    Article  PubMed  Google Scholar 

  • Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN, Confesor R, Depew DC, Hook TO, Ludsin SA, Matisoff G, McElmurry SP, Murray MW, Richards RP, Rao YR, Steffen MM, Wilhelm SW (2016) The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44–66

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Wang M, Chen CT, Wu HM, Lin L, Li M (2020) Seasonal succession of phytoplankton in two temperate artificial lakes with different water sources. Environ Sci Pollut Res 27:42324–42334

    Article  CAS  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, Cochlan WP (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Wentzky VC, Tittel J, Jäger CG, Bruggeman J, Rinke K (2020) Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J Ecol 108:1649–1663

    Article  CAS  Google Scholar 

  • Wiśniewska K, Lewandowska AU, Śliwińska-Wilczewska S (2019) The importance of cyanobacteria and microalgae present in aerosols to human health and the environment–review study. Environ Int 131:104964

    Article  PubMed  Google Scholar 

  • Xiao LJ, Wang T, Hu R, Han BP, Wang S, Qian X, Padisak J (2011) Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res 45:5099–5109

    Article  CAS  PubMed  Google Scholar 

  • Xie LQ, Xie P, Li SX, Tang HJ, Liu H (2003) The low TN: TP ratio, a cause or a result of Microcystis blooms? Water Res 37:2073–2080

    Article  CAS  PubMed  Google Scholar 

  • Ye SS, Gao L, Zhao J, An M, Wu HM, Li M (2020) Simultaneous wastewater treatment and lipid production by Scenedesmus sp HXY2. Bioresour Technol 302:122903

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zong R, He H, Liu K, Yan M, Miao Y, Ma B, Huang X (2021) Biogeographic distribution patterns of algal community in different urban lakes in China: insights into the dynamics and co-existence. J Environ Sci 100:216–227

    Article  Google Scholar 

  • Zhu W, Wan L, Zhao L (2010) Effect of nutrient level on phytoplankton community structure in different water bodies. J Environ Sci 22:32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51979236), Sichuan Science and Technology Program (2019YFH0127), Water Conservancy Science and Technology project of Shaanxi Province (2019slkj-1) and the Open Fund of State Key Laboratory of Eco-hydraulics in Northwest Arid Region (2019KFKT-1). ML was also funded as Tang Scholar by Cyrus Tang Foundation and Northwest A&F University.

Author information

Authors and Affiliations

Authors

Contributions

ML conceived the study. GL designed the experiment. JW and NM conducted sample collection. QH analysed the sample. ML and CC carried out the data analysis. GL, BP and CC wrote the paper. ML and BP revised the paper.

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Man Xiao

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2510 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Gao, L., Wei, J. et al. Spatial and environmental factors contributing to phytoplankton biogeography and biodiversity in mountain ponds across a large geographic area. Aquat Ecol 55, 721–735 (2021). https://doi.org/10.1007/s10452-021-09857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09857-2

Keywords

Navigation