Skip to main content

Advertisement

Log in

Mitochondrial oxidative stress initiates visual loss in sympathetic ophthalmia

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

The visual loss that occurs with sympathetic ophthalmia (SO) in the absence of recognizable retinal damage and inflammatory cell infiltration is an enigma. Experimental autoimmune uveoretinitis (EAU) is an animal model used to study human endogenous uveitis. Both innate and adaptive immune responses have been well studied in the photoreceptor damage mechanism of EAU. In our studies, in the early phase of EAU, proinflammatory molecules such as tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) and the subsequent mitochondrial DNA damage, mitochondrial protein alteration, and mitochondrial dysfunction by oxidative stress were observed before retinal inflammatory cell infiltration. Our recent study shows the importance of Toll-like receptors (TLRs) in the production of proinflammatory molecules and the induction of mitochondrial oxidative stress. Thus, the innate immune responses occur first with the activation of TLRs; this activation upregulates proinflammatory molecules, leading to mitochondrial oxidative stress before retinal inflammatory cell infiltration and the subsequent adaptive immune responses. Like EAU, SO also results in photoreceptor mitochondrial oxidative damage without retinal inflammatory cell infiltration. Such damage was associated with TNF-α, TNF-α receptors, and iNOS expression in the photoreceptors, suggesting that this molecular mechanism without retinal inflammatory cell infiltration may initiate photoreceptor damage in SO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chan CC, Mochizuki M. Sympathetic ophthalmia: an autoimmune ocular inflammatory disease. Springer Semin Immunopathol. 1999;21:125–34.

    Article  PubMed  CAS  Google Scholar 

  2. Goto H, Rao NA. Sympathetic ophthalmia and Vogt–Koyanagi–Harada syndrome. Int Ophthalmol Clin. 1990;30:279–85.

    Article  PubMed  CAS  Google Scholar 

  3. Rao NA. Role of oxygen free radicals in retinal damage associated with experimental uveitis. Trans Am Ophthalmol Soc. 1990;88:797–850.

    PubMed  CAS  Google Scholar 

  4. Prieto-del-Cura M, González-Guijarro J. Complications of uveitis: prevalence and risk factors in a series of 398 cases. Arch Soc Esp Oftalmol. 2009;84:523–8.

    Article  PubMed  CAS  Google Scholar 

  5. Sarti P, Giuffrè A, Forte E, Mastronicola D, Barone MC, Brunori M. Nitric oxide and cytochrome C oxidase: mechanisms of inhibition and NO degradation. Biochem Biophys Res Commun. 2000;274:183–7.

    Article  PubMed  CAS  Google Scholar 

  6. Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, et al. Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem. 2000;275:13175–8.

    Article  PubMed  CAS  Google Scholar 

  7. Carreras MC, Franco MC, Peralta JG, Poderoso JJ. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med. 2004;25:125–39.

    Article  PubMed  CAS  Google Scholar 

  8. Lisdero CL, Carreras MC, Meulemans A, Melani M, Aubier M, Boczkowski J, et al. The mitochondrial interplay of ubiquinol and nitric oxide in endotoxemia. Methods Enzymol. 2004;382:67–81.

    Article  PubMed  CAS  Google Scholar 

  9. Poderoso JJ, Carreras MC, Schöpfer F, Lisdero CL, Riobó NA, Giulivi C, et al. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med. 1999;26:925–35.

    Article  PubMed  CAS  Google Scholar 

  10. Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999;1411:351–69.

    Article  PubMed  CAS  Google Scholar 

  11. Brown GC, Borutaite V. Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp. 1999;66:17–25.

    PubMed  CAS  Google Scholar 

  12. Rao NA, Saraswathy S, Wu GS, Katselis GS, Wawrousek EF, Bhat S. Elevated retina-specific expression of the small heat shock protein, alphaA-crystallin, is associated with photoreceptor protection in experimental uveitis. Invest Ophthalmol Vis Sci. 2008;49:1161–71.

    Article  PubMed  Google Scholar 

  13. Agarwal RK, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Med. 2004;102:395–419.

    PubMed  CAS  Google Scholar 

  14. Saraswathy S, Rao NA. Mitochondrial proteomics in experimental autoimmune uveitis oxidative stress. Invest Ophthalmol Vis Sci. 2009;50:5559–66.

    Article  PubMed  Google Scholar 

  15. Wu GS, Zhang J, Rao NA. Peroxynitrite and oxidative damage in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 1997;38:1333–9.

    PubMed  CAS  Google Scholar 

  16. Zhang J, Wu LY, Wu GS, Rao NA. Differential expression of nitric oxide synthase in experimental uveoretinitis. Invest Ophthalmol Vis Sci. 1999;40:1899–905.

    PubMed  CAS  Google Scholar 

  17. Rao NA, Wu GS. Free radical mediated photoreceptor damage in uveitis. Prog Retin Eye Res. 2000;19:41–68.

    Article  PubMed  CAS  Google Scholar 

  18. Rajendram R, Saraswathy S, Rao NA. Photoreceptor mitochondrial oxidative stress in early experimental autoimmune uveoretinitis. Br J Ophthalmol. 2007;91:531–7.

    Article  PubMed  Google Scholar 

  19. Saraswathy S, Nguyen AM, Rao NA. The role of TLR4 in photoreceptor {alpha}a crystallin upregulation during early experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2010;51:3680–6.

    Article  PubMed  Google Scholar 

  20. Saraswathy S, Rao NA. Photoreceptor mitochondrial oxidative stress in experimental autoimmune uveitis. Ophthalmic Res. 2008;40:160–4.

    Article  PubMed  CAS  Google Scholar 

  21. Sartani G, Silver PB, Rizzo LV, Chan CC, Wiggert B, Mastorakos G, et al. Anti-tumor necrosis factor alpha therapy suppresses the induction of experimental autoimmune uveoretinitis in mice by inhibiting antigen priming. Invest Ophthalmol Vis Sci. 1996;37:2211–8.

    PubMed  CAS  Google Scholar 

  22. Nakamura S, Yamakawa T, Sugita M, Kijima M, Ishioka M, Tanaka S, et al. The role of tumor necrosis factor-alpha in the induction of experimental uveoretinitis in mice. Invest Ophthalmol Vis Sci. 1994;35:3884–9.

    PubMed  CAS  Google Scholar 

  23. Mizuguchi J, Takeuchi M, Usui M. Type I interferons as immunoregulatory molecules; implications for therapy in experimental autoimmune uveoretinitis. Arch Immunol Ther Exp. 2002;50:243–54.

    CAS  Google Scholar 

  24. Ooi KG, Galatowicz G, Towler HM, Lightman SL, Calder VL. Multiplex cytokine detection versus ELISA for aqueous humor: IL-5, IL-10, and IF gamma profiles in uveitis. Invest Ophthalmol Vis Sci. 2006;47:272–7.

    Article  PubMed  Google Scholar 

  25. Savion S, Oddo S, Grover S, Caspi RR. Lymphocytes in the rat: pathogenicity vs. lymphokine production, adhesion molecules and surface antigen expression. J Neuroimmunol. 1994;55:35–44.

    Article  PubMed  CAS  Google Scholar 

  26. Rao KM. Molecular mechanisms regulating iNOS expression in various cell types. J Toxicol Environ Health B Crit Rev. 2000;3:27–58.

    Article  PubMed  CAS  Google Scholar 

  27. Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002;20:S1–13.

    PubMed  CAS  Google Scholar 

  28. Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, et al. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci USA. 1993;90:3024–7.

    Article  PubMed  CAS  Google Scholar 

  29. Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985;237:408–14.

    Article  PubMed  CAS  Google Scholar 

  30. Vásquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B. Endothelial nitric oxide synthase dependent superoxide generation from adriamycin. Biochemistry. 1997;36:11293–7.

    Article  PubMed  Google Scholar 

  31. Valdez LB, Alvarez S, Arnaiz SL, Schöpfer F, Carreras MC, Poderoso JJ, et al. Reactions of peroxynitrite in the mitochondrial matrix. Free Radic Biol Med. 2000;29:349–56.

    Article  PubMed  CAS  Google Scholar 

  32. Calcerrada P, Peluffo G, Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des. 2011;17:3905–32.

    Google Scholar 

  33. Santos JH, Hunakova L, Chen Y, Bortner C, Van Houten B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem. 2003;278:1728–34.

    Article  PubMed  CAS  Google Scholar 

  34. Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res. 2002;509:127–51.

    Article  PubMed  CAS  Google Scholar 

  35. Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006;5:145–52.

    Article  Google Scholar 

  36. Khurana RN, Parikh JG, Saraswathy S, Wu GS, Rao NA. Mitochondrial oxidative DNA damage in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2008;49:3299–304.

    Article  PubMed  Google Scholar 

  37. Wu GS, Lee TD, Moore RE, Rao NA. Photoreceptor mitochondrial tyrosine nitration in experimental uveitis. Invest Ophthalmol Vis Sci. 2005;46:2271–81.

    Article  PubMed  Google Scholar 

  38. Bornhövd C, Vogel F, Neupert W, Reichert AS. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0–ATP synthase supracomplexes. J Biol Chem. 2006;281:13990–8.

    Article  PubMed  Google Scholar 

  39. Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol. 2004;40:861–8.

    Article  PubMed  CAS  Google Scholar 

  40. Lee SJ, Lee S. Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 2002;1:181–91.

    Article  PubMed  CAS  Google Scholar 

  41. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.

    PubMed  CAS  Google Scholar 

  42. Ohtaki H, Takeda T, Dohi K, Yofu S, Nakamachi T, Satoh K, et al. Increased mitochondrial DNA oxidative damage after transient middle cerebral artery occlusion in mice. Neurosci Res. 2007;58:349–55.

    Article  PubMed  CAS  Google Scholar 

  43. Ko MK, Saraswathy S, Parikh JG, Rao NA. The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophthalmol Vis Sci. 2011;52:5824–35.

    Article  PubMed  CAS  Google Scholar 

  44. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514–9.

    Article  PubMed  CAS  Google Scholar 

  45. Albini TA, Wang RC, Reiser B, Zamir E, Wu GS, Rao NA. Microglial stability and repopulation in the retina. Br J Ophthalmol. 2005;89:901–3.

    Article  PubMed  CAS  Google Scholar 

  46. Santos AM, Martín-Oliva D, Ferrer-Martín RM, Tassi M, Calvente R, Sierra A, et al. Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol. 2010;518:477–92.

    Article  PubMed  CAS  Google Scholar 

  47. Parikh JG, Saraswathy S, Rao NA. Photoreceptor oxidative damage in sympathetic ophthalmia. Am J Ophthalmol. 2008;146:866–75.

    Article  PubMed  CAS  Google Scholar 

  48. Palexas GN, Sussman G, Welsh NH. Ocular and systemic determination of IL-1 beta and tumour necrosis factor in a patient with ocular inflammation. Scand J Immunol Suppl. 1992;11:173–5.

    Article  PubMed  CAS  Google Scholar 

  49. Tanel A, Averill-Bates DA. The aldehyde acrolein induces apoptosis via activation of the mitochondrial pathway. Biochim Biophys Acta. 2005;1743:255–67.

    Article  PubMed  CAS  Google Scholar 

  50. Goto H, Wu GS, Gritz DC, Atalla LR, Rao NA. Chemotactic activity of the peroxidized retinal membrane lipids in experimental autoimmune uveitis. Curr Eye Res. 1991;10:1009–14.

    Article  PubMed  CAS  Google Scholar 

  51. Lim ML, Lum MG, Hansen TM, Roucou X, Nagley P. On the release of cytochrome C from mitochondria during cell death signaling. J Biomed Sci. 2002;9:488–506.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by The National Institute of Health grants EY017347, EY019506, and EY03040, and by a grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsing A. Rao.

Additional information

The content of this invited review article was presented at the ARVO-JOS joint symposium on May 13, 2011, held during the 115th Annual Meeting of the Japanese Ophthalmological Society.

About this article

Cite this article

Kaneko, Y., Rao, N.A. Mitochondrial oxidative stress initiates visual loss in sympathetic ophthalmia. Jpn J Ophthalmol 56, 191–197 (2012). https://doi.org/10.1007/s10384-012-0132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0132-9

Keywords

Navigation