Skip to main content

Inflammation-Induced Photoreceptor Cell Death

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

Neuroinflammation is an important aspect of many diseases of the eye, and experimental animal models have been widely used to determine its impact on retinal homeostasis and neuron survival. Physical separation of the neurosensory retina from the underlying retinal pigment epithelium (RPE) results in activation and infiltration of macrophages. Numerous studies have shown the critical role of macrophages in retinal disease processes. In retinal detachment, accumulation of macrophages in the subretinal space is associated with changes in cytokine and chemokine profile which lead to photoreceptor cell death. Targeted disruption of macrophage chemotaxis significantly reduces retinal detachment-induced photoreceptor degeneration. Apoptosis is the predominant mechanism of cell death; however regulated necrosis is also a contributor of photoreceptor loss. Therefore, effective neuroprotective approaches could integrate combined inhibition of both apoptotic and regulated necrosis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arroyo JG, Yang L, Bula D et al (2005) Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol 139:605–610

    Article  PubMed  Google Scholar 

  • Bird A (2007) How to keep photoreceptors alive. Proc Natl Acad Sci U S A 104:2033–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringmann A, Wiedemann P (2012) Muller glial cells in retinal disease. Ophthalmologica 227:1–19

    Article  PubMed  Google Scholar 

  • Chang CJ, Lai WW, Edward DP et al (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113:880–886

    Article  CAS  PubMed  Google Scholar 

  • Cherepanoff S, McMenamin P, Gillies MC et al (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925

    Article  CAS  PubMed  Google Scholar 

  • Cook B, Lewis GP, Fisher SK et al (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 36:990–996

    CAS  PubMed  Google Scholar 

  • Cruz-Guilloty F, Saeed AM, Echegaray JJ et al (2013) Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int J Inflamm 2013:503725

    Article  Google Scholar 

  • Erickson PA, Fisher SK, Guerin CJ et al (1987) Glial fibrillary acidic protein increases in Muller cells after retinal detachment. Exp Eye Res 44:37–48

    Article  CAS  PubMed  Google Scholar 

  • Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunin M, Hagbi-Levi S, Rinsky B et al (2016) Transcriptome analysis on monocytes from patients with neovascular age-related macular degeneration. Sci Rep 6:29046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisatomi T, Sakamoto T, Goto Y et al (2002) Critical role of photoreceptor apoptosis in functional damage after retinal detachment. Curr Eye Res 24:161–172

    Article  PubMed  Google Scholar 

  • Kang HK, Luff AJ (2008) Management of retinal detachment: a guide for non-ophthalmologists. BMJ 336:1235–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlstetter M, Scholz R, Rutar M et al (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45:30–57

    Article  PubMed  Google Scholar 

  • Kelly J, Ali Khan A, Yin J et al (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117:3421–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno H, Chen Y, Kevany BM et al (2013) Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. J Biol Chem 288:15326–15341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunikata H, Yasuda M, Aizawa N et al (2013) Intraocular concentrations of cytokines and chemokines in rhegmatogenous retinal detachment and the effect of intravitreal triamcinolone acetonide. Am J Ophthalmol 155:1028–1037. e1021

    Article  CAS  PubMed  Google Scholar 

  • Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    Article  CAS  PubMed  Google Scholar 

  • Lewis GP, Charteris DG, Sethi CS et al (2002) Animal models of retinal detachment and reattachment: identifying cellular events that may affect visual recovery. Eye (Lond) 16:375–387

    Article  CAS  Google Scholar 

  • Lewis GP, Sethi CS, Carter KM et al (2005) Microglial cell activation following retinal detachment: a comparison between species. Mol Vis 11:491–500

    CAS  PubMed  Google Scholar 

  • Lo AC, Woo TT, Wong RL et al (2011) Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica 226(Suppl 1):10–17

    Article  PubMed  Google Scholar 

  • Matsumoto H, Kataoka K, Tsoka P et al (2014) Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 55:4165–4174

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa T, Matsubara A, Noda K et al (2006) Characterization of cytokine responses to retinal detachment in rats. Mol Vis 12:867–878

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Takeda M, Lewis GP et al (2007a) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768

    Article  PubMed  Google Scholar 

  • Nakazawa T, Hisatomi T, Nakazawa C et al (2007b) Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 104:2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noailles A, Maneu V, Campello L et al (2016) Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep 6:33356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutar M, Natoli R, Provis JM (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 9:221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AM, Martin-Oliva D, Ferrer-Martin RM et al (2010) Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol 518:477–492

    Article  CAS  PubMed  Google Scholar 

  • Sene A, Apte RS (2014) Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 25:107–114

    Article  CAS  PubMed  Google Scholar 

  • Sene A, Khan AA, Cox D et al (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sene A, Chin-Yee D, Apte RS (2015) Seeing through VEGF: innate and adaptive immunity in pathological angiogenesis in the eye. Trends Mol Med 21:43–51

    Article  CAS  PubMed  Google Scholar 

  • Sennlaub F, Auvynet C, Calippe B et al (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5:1775–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone J, Maslim J, Valter-Kocsi K et al (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18:689–735

    Article  CAS  PubMed  Google Scholar 

  • Trichonas G, Murakami Y, Thanos A et al (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci U S A 107:21695–21700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ma W, Zhao L et al (2011) Adaptive Muller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 8:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AF, Chakarova CF, Abd El-Aziz MM et al (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284

    Article  CAS  PubMed  Google Scholar 

  • Wurm A, Pannicke T, Iandiev I et al (2006) Changes in membrane conductance play a pathogenic role in osmotic glial cell swelling in detached retinas. Am J Pathol 169:1990–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi H, Katschke KJ Jr, Li Y et al (2016) IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 213:189–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Bula D, Arroyo JG et al (2004) Preventing retinal detachment-associated photoreceptor cell loss in Bax-deficient mice. Invest Ophthalmol Vis Sci 45:648–654

    Article  PubMed  Google Scholar 

  • Yang LP, Zhu XA, Tso MO (2007) A possible mechanism of microglia-photoreceptor crosstalk. Mol Vis 13:2048–2057

    CAS  PubMed  Google Scholar 

  • Zacks DN, Boehlke C, Richards AL et al (2007) Role of the Fas-signaling pathway in photoreceptor neuroprotection. Arch Ophthalmol 125:1389–1395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation Fighting Blindness Travel Fellowship, The Starr Foundation, The Jeffrey Fort Innovation Fund, a Research to Prevent Blindness Physician Scientist Award (RSA) and a Research to Prevent Blindness Nelson Trust Award for Retinitis Pigmentosa. The Department of Ophthalmology, Washington University School of Medicine, is supported by an unrestricted grant from the Research to Prevent Blindness, New York City, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoulaye Sene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sene, A., Apte, R.S. (2018). Inflammation-Induced Photoreceptor Cell Death. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_25

Download citation

Publish with us

Policies and ethics