Skip to main content

Advertisement

Log in

Intrinsic optical signal imaging of retinal activation

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Fast intrinsic optical signals (IOSs) correlated with stimulus-activated retinal responses are reviewed. Fast IOSs have a time course comparable to the stimulus-evoked electrophysiological kinetics of the retina, and thus promise a new methodology for high-resolution evaluation of the physiological health of the retina. However, practical application of fast IOSs for retinal study and diagnosis is challenging because of their low sensitivity and limited specificity. Using isolated amphibian retinas, a series of experiments to optimize and characterize fast IOSs has been conducted. Fast, high-resolution nearinfrared light imaging disclosed both positive (increasing) and negative (decreasing) optical responses in adjacent retinal areas, which satisfied spatial resolution essential to the differentiation of IOSs from opposite polarities. At the subcellular (∼μm) level, fast IOSs often exceeded 5% ΔI/I, where I is the dynamic optical change, and I is the background light intensity. Experiments with isolated frog retinas suggest that negative IOSs stem primarily from the photoreceptor layer, while positive IOSs come from inner retinal layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogg RE, Chakravarthy U. Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res 2006;25:249–276.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer-Rusenberg B, Pavlidis M, Stupp T, Thanos S. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol 2007;245:1009–1018.

    Article  PubMed  Google Scholar 

  3. Qin Y, Xu G, Wang W. Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats. Curr Eye Res 2006;31:967–974.

    Article  PubMed  Google Scholar 

  4. Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 2006;124:853–859.

    Article  PubMed  Google Scholar 

  5. Nickells RW. Ganglion cell death in glaucoma: from mice to men. Vet Ophthalmol 2007;10 Suppl 1:88–94.

    Article  Google Scholar 

  6. Falsini B, Serrao S, Fadda A, et al. Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefes Arch Clin Exp Ophthalmol 1999;237:193–200.

    Article  PubMed  CAS  Google Scholar 

  7. Ventura LM, Sorokac N, De Los Santos R, et al. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 2006;47:3904–3911.

    Article  PubMed  Google Scholar 

  8. Ng JS, Bearse MA, Jr., Schneck ME, et al. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 2008;49:1622–1628.

    Article  PubMed  Google Scholar 

  9. Han Y, Bearse MA, Jr., Schneck ME, et al. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45:948–954.

    Article  PubMed  Google Scholar 

  10. Miyake Y, Shiroyama N, Ota I, Horiguchi M. Oscillatory potentials in electroretinograms of the human macular region. Invest Ophthalmol Vis Sci 1988;29:1631–1635.

    PubMed  CAS  Google Scholar 

  11. Berninger TA, Arden GB. The pattern electroretinogram. Eye 1988;2 Suppl:S257–283.

    Google Scholar 

  12. Hood DC, Odel JG, Chen CS, Winn BJ. The multifocal electroretinogram. J Neuroophthalmol 2003;23:225–235.

    PubMed  Google Scholar 

  13. Falsini B, Marangoni D, Salgarello T, et al. Structure-function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 2008;246:1153–1162.

    Article  PubMed  Google Scholar 

  14. Oishi A, Otani A, Sasahara M, et al. Retinal nerve fiber layer thickness in patients with retinitis pigmentosa. Eye 2008;23:561–566.

    Article  PubMed  Google Scholar 

  15. Grinvald A, Lieke E, Frostig RD, et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.

    Article  PubMed  CAS  Google Scholar 

  16. Chance B, Luo Q, Nioka S, et al. Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast. Philos Trans R Soc Lond B Biol Sci 1997;352:707–716.

    Article  PubMed  CAS  Google Scholar 

  17. Rector DM, Carter KM, Volegov PL, George JS. Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage 2005;26:619–627.

    Article  PubMed  Google Scholar 

  18. Haglund MM, Ojemann GA, Hochman DW. Optical imaging of epileptiform and functional-activity in human cerebral-cortex. Nature 1992;358:668–671.

    Article  PubMed  CAS  Google Scholar 

  19. Hoshi Y, Oda I, Wada Y, et al. Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Cogn Brain Res 2000;9:339–342.

    Article  CAS  Google Scholar 

  20. Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002;17:719–731.

    Article  PubMed  Google Scholar 

  21. Pouratian N, Sheth SA, Martin NA, Toga AW. Shedding light on brain mapping: advances in human optical imaging. Trends Neurosci 2003;26:277–282.

    Article  PubMed  CAS  Google Scholar 

  22. Rector D, Harper R. Imaging of hippocampal neural activity in freely behaving animals. Behav Brain Res 1991;42:143–149.

    Article  PubMed  CAS  Google Scholar 

  23. Chen S, Li P, Luo W, et al. Time-varying spreading depression waves in rat cortex revealed by optical intrinsic signal imaging. Neurosci Lett 2006;396:132–136.

    Article  PubMed  CAS  Google Scholar 

  24. Okawa Y, Fujikado T, Miyoshi T, et al. Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal-transretinal stimulation. Invest Ophthalmol Vis Sci 2007;48:4777–4784.

    Article  PubMed  Google Scholar 

  25. Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M. Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 2004;45:3820–3826.

    Article  PubMed  Google Scholar 

  26. Hanazono G, Tsunoda K, Kazato Y, et al. Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina. Invest Ophthalmol Vis Sci 2008;49:4655–4663.

    Article  PubMed  Google Scholar 

  27. Abramoff MD, Kwon YH, Ts’o D, et al. Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 2006;47:715–721.

    Article  PubMed  Google Scholar 

  28. Yao XC, Yamauchi A, Perry B, George JS. Rapid optical coherence tomography and recording functional scattering changes from activated frog retina. Appl Opt 2005;44:2019–2023.

    Article  PubMed  Google Scholar 

  29. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett 2006;31:2308–2310.

    Article  PubMed  CAS  Google Scholar 

  30. Bizheva K, Pflug R, Hermann B, et al. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 2006;103:5066–5071.

    Article  PubMed  CAS  Google Scholar 

  31. Jonnal RS, Rha J, Zhang Y, et al. In vivo functional imaging of human cone photoreceptors. Opt Exp 2007;15:16141–16160.

    Article  Google Scholar 

  32. Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci 2008;49:713–719.

    Article  PubMed  Google Scholar 

  33. Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 2005;36:57–66.

    PubMed  Google Scholar 

  34. Hofmann KP, Uhl R, Hoffmann W, Kreutz W. Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells. Biophys Struct Mech 1976;2:61–77.

    Article  PubMed  CAS  Google Scholar 

  35. Harary HH, Brown JE, Pinto LH. Rapid light-induced changes in near infrared transmission of rods in Bufo marinus. Science 1978;202:1083–1085.

    Article  PubMed  CAS  Google Scholar 

  36. Pepperberg DR, Kahlert M, Krause A, Hofmann KP. Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors. Proc Natl Acad Sci U S A 1988;85:5531–5535.

    Article  PubMed  CAS  Google Scholar 

  37. Dawis SM, Rossetto M. Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina. Vis Neurosci 1993;10:687–692.

    Article  PubMed  CAS  Google Scholar 

  38. Yao XC, Foust A, Rector DM, et al. Cross-polarized reflected light measurement of fast optical responses associated with neural activation. Biophys J 2005;88:4170–4177.

    Article  PubMed  CAS  Google Scholar 

  39. Akkin T, Joo C, de Boer JF. Depth-resolved measurement of transient structural changes during action potential propagation. Biophys J 2007;93:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen LB, Keynes RD, Hille B. Light scattering and birefringence changes during nerve activity. Nature 1968;218:438–441.

    Article  PubMed  CAS  Google Scholar 

  41. Tasaki I, Watanabe A, Sandlin R, Carnay L. Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A 1968;61:883–888.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen LB. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 1973;53:373–418.

    PubMed  CAS  Google Scholar 

  43. Zhao YB, Yao XC. Intrinsic optical imaging of stimulus-modulated physiological responses in amphibian retina. Opt Lett 2008;33:342–344.

    Article  PubMed  Google Scholar 

  44. Yao XC, Zhao YB. Optical dissection of stimulus-evoked retinal activation. Opt Exp 2008;16:12446–12459.

    Article  Google Scholar 

  45. Yao XC, George JS. Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina. J Biomed Opt 2006;11:064030.

    Article  PubMed  Google Scholar 

  46. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 1994;11:519–532.

    Article  PubMed  CAS  Google Scholar 

  47. Yao XC, George JS. Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals. Neuroimage 2006;33:898–906.

    Article  PubMed  Google Scholar 

  48. Foust AJ, Rector DM. Optically teasing apart neural swelling and depolarization. Neuroscience 2007;145:887–899.

    Article  PubMed  CAS  Google Scholar 

  49. Baylor DA, Hodgkin AL. Changes in time scale and sensitivity in turtle photoreceptors. J Physiol 1974;242:729–758.

    PubMed  CAS  Google Scholar 

  50. Mizunami M. Nonlinear signal transmission between second- and third-order neurons of cockroach ocelli. J Gen Physiol 1990;95:297–317.

    Article  PubMed  CAS  Google Scholar 

  51. Dong CJ, Hare WA. Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res 2000;40:579–589.

    Article  PubMed  CAS  Google Scholar 

  52. Lamb TD, Pugh EN, Jr. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 1992;449:719–758.

    PubMed  CAS  Google Scholar 

  53. Yao XC, Liu L, Li YG. Intrinsic optical signal imaging of retinal activity in frog eye. J Innovative Opt Health Sci 2009;2:201–208.

    Article  Google Scholar 

  54. Arshavsky VY, Lamb TD, Pugh EN Jr. G proteins and phototransduction. Annu Rev Physiol 2002;64:153–187.

    Article  PubMed  CAS  Google Scholar 

  55. Kuhn H, Bennett N, Michel-Villaz M, Chabre M. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes. Proc Natl Acad Sci U S A 1981;78:6873–6877.

    Article  PubMed  CAS  Google Scholar 

  56. Gao W, Cense B, Zhang Y, et al. Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt Exp 2008;16:6486–6501.

    Article  Google Scholar 

  57. Roorda A, Williams DR. Optical fiber properties of individual human cones. J Vis 2002;2:404–412.

    Article  PubMed  Google Scholar 

  58. Franze K, Grosche J, Skatchkov SN, et al. Muller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 2007;104:8287–8292.

    Article  PubMed  CAS  Google Scholar 

  59. Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond B 1933;112:428–450.

    Article  Google Scholar 

  60. Barnes S. Center-surround antagonism mediated by proton signaling at the cone photoreceptor synapse. J Gen Physiol 2003;122: 653–656.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Cheng Yao.

About this article

Cite this article

Yao, XC. Intrinsic optical signal imaging of retinal activation. Jpn J Ophthalmol 53, 327–333 (2009). https://doi.org/10.1007/s10384-009-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0685-4

Key Words

Navigation