Skip to main content

Advertisement

Log in

Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To examine whether systemic diseases like diabetes and arterial hypertension, which frequently cause retinopathies leading to blindness effect the morphology of retinal ganglion cells (RGC).

Methods

Histological retina material with a history of being untreated, or laser-coagulated (LC) diabetic retinopathy (DR), or arterial hypertensive retinopathy (AHR) was used. The RGC were labeled by introducing crystals of the fluorescent carbocyanine dye DiI into the nerve fiber layer, which contains ganglion cell axons.

Results

The typical silhouettes of both major types of RGC, parasol and midget cells, were identified. The axons in DR and AHR retinas showed morphology changes such as irregular swelling and beading. Dendritic field sizes were significantly reduced in RGC of both the hypertonic and diabetic retinas. A significant reduction in branching frequency was evident in both the diabetic and hypertonic retinas, in both the midget and the parasol cells. In LC retinas, both parasol and midget RGC were observed within the LC spots, although their numbers were dramatically decreased compared with normal retinas.

Conclusions

The data suggest that diabetes and arterial hypertonia have similar effects on the morphology of RGC, in addition to causing microvascular alterations and bleeding. Therefore, therapeutic measures and prognostic outcomes in diabetic and hypertensive retinopathy should also consider regressive changes in retinal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–i
Fig. 2a–f
Fig. 3a–f
Fig. 4a–f
Fig. 5a–f

Similar content being viewed by others

References

  1. Anastasi M, Lauricella M, Giordano C, Galluzzo A (1985) Visual evoked potentials in insulin-dependent diabetics. Acta Diabetol Lat 22:343–349

    Article  PubMed  CAS  Google Scholar 

  2. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    PubMed  CAS  Google Scholar 

  3. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  PubMed  CAS  Google Scholar 

  4. Bloodworth JMB Jr (1962) Diabetic retinopathy. Diabetes 11:1–22

    PubMed  Google Scholar 

  5. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990

    PubMed  CAS  Google Scholar 

  6. Bresnick GH, Palta M (1987) Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol 105:929–933

    PubMed  CAS  Google Scholar 

  7. Brunette JR, Lafond G (1983) Electroretinographic evaluation of diabetic retinopathy: sensitivity of amplitude and time response. Can J Ophthalmol 18:285–289

    PubMed  CAS  Google Scholar 

  8. Buchi ER, Kurosawa A, Tso MO (1996) Retinopathy in diabetic hypertensive monkeys: a pathologic study. Graefes Arch Clin Exp Ophthalmol 234:388–398

    Article  PubMed  CAS  Google Scholar 

  9. Caputo S, Di Leo MA, Falsino B, Ghirlanda G, Porciatti V, Minella A et al (1990) Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 13:412–418

    Article  PubMed  CAS  Google Scholar 

  10. Chihara E, Matsuoka T, Ogura Y, Matsumura M (1993) Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 100:1147–1151

    PubMed  CAS  Google Scholar 

  11. Coupland SG (1987) A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol 66:207–218

    Article  PubMed  CAS  Google Scholar 

  12. Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89:9666–9670

    Article  PubMed  CAS  Google Scholar 

  13. Dacey DM (1993) The mosaic of midget ganglion cells in the human retina. J Neurosci 13:5334–5355

    PubMed  CAS  Google Scholar 

  14. Engerman RL, Kern TS (1995) Retinopathy in animal models of diabetes. Diabetes Metab Rev 11:109–120

    Article  PubMed  CAS  Google Scholar 

  15. ETDRS Report (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:766–785

    Google Scholar 

  16. Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713

    PubMed  CAS  Google Scholar 

  17. Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527–534

    PubMed  CAS  Google Scholar 

  18. Hayreh SS, Jonas JB (2000) Appearance of the optic disk and retinal nerve fiber layer in atherosclerosis and arterial hypertension: an experimental study in rhesus monkeys. Am J Ophthalmol 130:91–96

    Article  PubMed  CAS  Google Scholar 

  19. Hayreh SS (1996) Duke-Elder lecture. Systemic arterial blood pressure and the eye. Eye 10:5–28

    PubMed  Google Scholar 

  20. Jakobsen J, Brimijoin S, Skau K, Sidenius P, Wells D (1981) Retrograde axonal transport of transmitter enzymes, fucose-labeled protein, and nerve growth factor in streptozotocin-diabetic rats. Diabetes 30:797–803

    PubMed  CAS  Google Scholar 

  21. Jampol LM (1983) Arteriolar occlusive diseases of the macula. Ophthalmology 90:534–539

    PubMed  CAS  Google Scholar 

  22. Kawai SI, Vora S, Das S, Gachie E, Becker B, Neufeld AH (2001) Modelling of risk factors for the degeneration of retinal ganglion cells after ischemia/reperfusion in rats: effects of age, caloric restriction, diabetes, pigmentation, and glaucoma. FASEB J 15:1285–1287

    PubMed  CAS  Google Scholar 

  23. Lieth E, Barber A, Xu B, Dice C, Ratz MJ, Tanase D et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47:815–820

    Article  PubMed  CAS  Google Scholar 

  24. Lieth E, Gardner TW, Barber AJ, Antonetti DA (2000) Penn State Retina Research Group. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 281:3–8

    Article  Google Scholar 

  25. Lopes de Faria JM, Russ H, Costa VP (2002) Retinal fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 86(7):725–728

    Article  PubMed  CAS  Google Scholar 

  26. Lorenzi M, Gerhardinger C (2001) Early cellular and molecular changes induced by diabetes in the retina. Diabetologia 44:791–804

    Article  PubMed  CAS  Google Scholar 

  27. Louzada-Junior P, Dias JJ, Santos WF, Lachat JJ, Bradford HF, Coutinho-Netto J (1992) Glutamate release in experimental ischaemia of the retina: an approach using microdialysis. J Neurochem 59:358–363

    Article  PubMed  CAS  Google Scholar 

  28. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB (2004) Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45:3330–3336

    Article  PubMed  Google Scholar 

  29. Minckler DS, Bunt AH, Johanson GW (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci 16:426–441

    PubMed  CAS  Google Scholar 

  30. Mizutani M, Gerhardinger C, Lorenzi M (1998) Müller cell changes in human diabetic retinopathy. Diabetes 47:445–449

    Article  PubMed  CAS  Google Scholar 

  31. Mizutani M, Kern TS, Lorenzi M (1996) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97:2883–2890

    Article  PubMed  CAS  Google Scholar 

  32. Palmowski A, Sutter EE, Bearse MA Jr, Fung W (1997) Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 38:2586–2596

    PubMed  CAS  Google Scholar 

  33. Pavlidis M, Stupp T, Naskar R, Cengiz C, Thanos S (2003) Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest Ophthalmol Vis Sci 44:5196–5205

    Article  PubMed  Google Scholar 

  34. Prager TC, Garcia CA, Mincher Ca, Mishra J, Chu HH (1990) The pattern electroretinogram in diabetes. Am J Ophthalmol 109:279–284

    PubMed  CAS  Google Scholar 

  35. Ravalico G, Rinaldi G, Solimano N, Bellini G, Cosenzi A, Bocin E (1998) Oscillatory potentials of the electroretinogram in hypertensive patients with different antihypertensive treatment. Doc Ophthalmol 94:321–326

    Article  CAS  Google Scholar 

  36. Ravalico G, Rinaldi G, Solimano N, Bellini G, Cosenzi A, Sacerdote A et al (1995) Oscillatory potentials in subjects with treated hypertension. Ophthalmologica 209:187–189

    Article  PubMed  CAS  Google Scholar 

  37. Rodieck RW, Binmoeller KF, Dineen J (1985) Parasol and midget ganglion cells of the human retina. J Comp Neurol 233:115–132

    Article  PubMed  CAS  Google Scholar 

  38. Sadun AA, Bassi CJ (1990) Optic nerve damage in Alzheimer’s disease. Ophthalmology 97:9–17

    PubMed  CAS  Google Scholar 

  39. Scott T, Foote J, Peat B, Galway G (1986) Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. J Anat 144:145–152

    PubMed  CAS  Google Scholar 

  40. Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17:59–76

    Article  PubMed  CAS  Google Scholar 

  41. Silveira LC, Saito CA, Lee BB, Kremers J, da Silva Filho M, Kilavik BE et al (2004) Morphology and physiology of primate M- and P-cells. Prog Brain Res 144:21–46

    Article  PubMed  Google Scholar 

  42. Thanos S, Rohrbach JM, Thiel HJ (1991) Postmortem preservation of ganglion cells in the human retina. A morphometric investigation with the carbocyanine dye DiI. Retina 11:318–327

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe M, Rodieck RW (1989) Parasol and midget ganglion cells of the primate retina. J Comp Neurol 289:434–454

    Article  PubMed  CAS  Google Scholar 

  44. Wolter J (1961) Diabetic retinopathy. Am J Ophthalmol 51:1123–1141

    PubMed  CAS  Google Scholar 

  45. Zhang L, Inoue M, Dong K, Yamamoto M (1998) Alterations in retrograde axonal transport in optic nerve of type I and type II diabetic rats. Kobe J Med Sci 44:205–215

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solon Thanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Rüsenberg, B., Pavlidis, M., Stupp, T. et al. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol 245, 1009–1018 (2006). https://doi.org/10.1007/s00417-006-0489-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0489-x

Keywords

Navigation