Skip to main content

Advertisement

Log in

Microbial fuel cells for dye decolorization

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Microbial fuel cells are used for energy production, zero carbon dioxide emission and wastewater remediation. Textile industrial effluents contain organic and inorganic compounds that can fuel microbial fuel cells. Here, we review microorganisms that are used as biocatalyst for dye decolorization with energy production. We also present the most common electrodes, membranes and electrolytes used for dye decolorization with electricity production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394. doi:10.1021/es0525511

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010) Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Appl Surf Sci 257(5):1628–1633

    Article  CAS  Google Scholar 

  • Ahn Y, Logan BE (2013) Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Bioresour Technol 132:436–439. doi:10.1016/j.biortech.2013.01.113

    Article  CAS  Google Scholar 

  • Balamurugan B, Thirumarimurugan M, Kannadasan T (2011) Anaerobic degradation of textile dye bath effluent using Halomonas sp. Bioresour Technol 102(10):6365–6369. doi:10.1016/j.biortech.2011.03.017

    Article  CAS  Google Scholar 

  • Cao Y, Hu Y, Sun J, Hou B (2010) Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry 79:71–76. doi:10.1016/j.bioelechem.2009.12.001

    Article  CAS  Google Scholar 

  • Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24:849–854. doi:10.1016/j.bios.2008.07.015

    Article  CAS  Google Scholar 

  • Chen BY, Zhang MM, Chang CT, Ding Y, Lin KL, Chiou C, Hsueh CC, Xu H (2010) Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour Technol 101:4737–4741. doi:10.1016/j.biortech.2010.01.133

    Article  CAS  Google Scholar 

  • Chen Bor-Yann et al (2014) Exploring redox-mediating characteristics of textile dye-bearing microbial fuel cells: thionin and malachite green. Biores Technol 169:277–283. doi:10.1016/j.biortech.2014.06.084

    Article  CAS  Google Scholar 

  • Chen Bor-Yann et al (2015) Deciphering electron-shuttling characteristics of thionine-based textile dyes in microbial fuel cells. J Taiwan Inst Chem Eng 51:63–70. doi:10.1016/j.jtice.2014.12.031

    Article  Google Scholar 

  • Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569. doi:10.1021/es0709831

    Article  CAS  Google Scholar 

  • Cui D, Guo YQ, Lee HS, Wu WM, Liang B, Wang AJ, Cheng HY (2014) Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up. Bioresour Technol 163:254–261. doi:10.1016/j.biortech.2014.03.165

    Article  CAS  Google Scholar 

  • Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101:3500–3505. doi:10.1016/j.biortech.2009.11.107

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482. doi:10.1016/j.biotechadv.2007.05.004

    Article  CAS  Google Scholar 

  • Fan Y, Hu H, Liu H, Qian F, Morse DE, Mink JE, Qaisi RM, Logan BE, Hussain MM, Choi S, University Florida State (2015) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Biosens Bioelectron 69:e89. doi:10.1038/am.2014

    Google Scholar 

  • Fang Z, Song HL, Cang N, Li XN (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171. doi:10.1016/j.biortech.2013.06.073

    Article  CAS  Google Scholar 

  • Fang Zhou et al (2015) Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron 68:135–141. doi:10.1016/j.bios.2014.12.047

    Article  CAS  Google Scholar 

  • Fernández de Dios MÁ, del Campo AG, Fernández FJ, Rodrigo M, Pazos M, Sanromán MÁ (2013) Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolorisation by an ex situ and in situ electro-Fenton process. Bioresour Technol 148:39–46. doi:10.1016/j.biortech.2013.08.084

    Article  Google Scholar 

  • Goyal RN, Minocha Ashwani (1985) Electrochemical behaviour of the bisazo dye, direct red-81. J Electroanal Chem Interfacial Electrochem 193(1-2):231–240. doi:10.1016/0022-0728(85)85065-8

    Article  CAS  Google Scholar 

  • Harnisch F, Wirth S, Schröder U (2009) Electrochemistry communications effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron (II) phthalocyanine based electrodes. Electrochem Commun 11:2253–2256. doi:10.1016/j.elecom.2009.10.002

    Article  CAS  Google Scholar 

  • He P, Xu Y, Fang Y (2006) Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim Acta 152:175–186. doi:10.1007/s00604-005-0445-1

    Article  CAS  Google Scholar 

  • He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air–cathode microbial fuel cell. Bioelectrochemistry 74:78–82. doi:10.1016/j.bioelechem.2008.07.007

    Article  CAS  Google Scholar 

  • Heijne ATER, Wilde VDE (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel. Environ Sci Technol 40(17):5200–5205. doi:10.1021/es0608545

    Article  Google Scholar 

  • Hou B, Sun J, Hu YY (2011) Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Bioresour Technol 102:4433–4438. doi:10.1016/j.biortech.2010.12.092

    Article  CAS  Google Scholar 

  • Hou B, Hu Y, Sun J (2012) Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresour Technol 111:105–110. doi:10.1016/j.biortech.2012.02.017

    Article  CAS  Google Scholar 

  • Jayaprakash J, Parthasarathy A, Viraraghavan R (2016) Decolorization and degradation of monoazo and diazo dyes in Pseudomonas catalyzed microbial fuel cell. Environ Prog Sustain Energy 35:1623–1628. doi:10.1002/ep.12397

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2012) Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Bioresour Technol 124:23–28. doi:10.1016/j.biortech.2012.08.034

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2014) The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells. Can J Chem Eng 92:610–614. doi:10.1002/cjce.21895

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2015) Challenges to and opportunities in microbial fuel cells. In: Navanietha Krishnaraj R, Yu J-S (eds) Bioenergy: opportunities and challenges. Apple Academic Press, Oakville, pp 87–124

    Google Scholar 

  • Jayapriya J, Gopal J, Ramamurthy V, Kamachi Mudali U, Raj B (2012) Preparation and characterization of biocompatible carbon electrodes. Compos Part B Eng 43:1329–1335. doi:10.1016/j.compositesb.2011.10.019

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. N Biotechnol. 29:32–37. doi:10.1016/j.nbt.2011.04.014

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2012) Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresour Technol 119:22–27. doi:10.1016/j.biortech.2012.05.059

    Article  CAS  Google Scholar 

  • Kang YL, Pichiah S, Ibrahim S (2016) Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2016.09.059

    Google Scholar 

  • Kim JR, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009. doi:10.1021/es062202m

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2011) Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265(1):112–118. doi:10.1016/j.desal.2010.07.040

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Jangra K, Dilbaghi N, Umar A (2014) Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions. J Nanosci Nanotechnol 14:4331–4336. doi:10.1166/jnn.2014.8077

    Article  CAS  Google Scholar 

  • Li Z, Zhang X, Lin J, Han S, Lei L (2010) Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system. Bioresour Technol 101:4440–4445. doi:10.1016/j.biortech.2010.01.114

    Article  CAS  Google Scholar 

  • Liu L, Li FB, Feng CH, Li XZ (2009) Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol 85:175–183. doi:10.1007/s00253-009-2147-9

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Environ Sci Technol 40:5172–5180. doi:10.1021/es0627592

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952. doi:10.1016/j.watres.2004.11.019

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332. doi:10.1016/j.copbio.2006.04.006

    Article  CAS  Google Scholar 

  • Mash HE, Chin YP, Sigg L, Hari R, Xue H (2003) Complexation of copper by zwitterionic aminosulfonic (good) buffers. Anal Chem 75:671–677. doi:10.1021/ac0261101

    Article  CAS  Google Scholar 

  • Menek Necati, Karaman Yeliz (2005) Polarographic and voltammetric investigation of 8-hydroxy-7-(4-sulfo-1-naphthylazo)-5-quinoline sulfonic acid. Dyes Pigm 67(1):9–14. doi:10.1016/j.dyepig.2004.10.002

    Article  CAS  Google Scholar 

  • Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143. doi:10.1021/es900057f

    Article  CAS  Google Scholar 

  • Niu CG, Wang Y, Zhang XG, Zeng GM, Huang DW, Ruan M, Li XW (2012) Decolorization of an azo dye orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate. Bioresour Technol 126:101–106. doi:10.1016/j.biortech.2012.09.001

    Article  CAS  Google Scholar 

  • Oh SE, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169. doi:10.1007/s00253-005-0066-y

    Article  CAS  Google Scholar 

  • Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Technol 12(1):405–420. doi:10.1007/s13762-014-0499-x

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298. doi:10.1016/j.tibtech.2005.04.008

    Article  CAS  Google Scholar 

  • Rajaguru P et al (2002) Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutat Res Genet Toxicol Environ Mutagenesis 517(1):29–37. doi:10.1016/S1383-5718(02)00025-6

    Article  CAS  Google Scholar 

  • Savizi ISP, Kariminia HR, Bakhshian S (2012) Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode. Environ Sci Technol 46(12):6584–6593. doi:10.1021/es300367h

    Article  CAS  Google Scholar 

  • Senan Resmi C, Emilia Abraham T (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation 15(4):275–280. doi:10.1023/B:BIOD.0000043000.18427.0a

    Article  CAS  Google Scholar 

  • Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042. doi:10.1021/es0480668

    Article  CAS  Google Scholar 

  • Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87(4):455–468

    CAS  Google Scholar 

  • Sun J, Hu Y, Bi YZ, Cao YQ (2009a) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100:3185–3192. doi:10.1016/j.biortech.2009.02.002

    Article  CAS  Google Scholar 

  • Sun J, Hu Y, Bi Z, Cao Y (2009b) Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 187:471–479. doi:10.1016/j.jpowsour.2008.11.022

    Article  CAS  Google Scholar 

  • Sun Jian, Hu Y, Hou B (2011) Electrochemical characterization of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell. Electrochim Acta 56(19):6874–6879. doi:10.1016/j.electacta.2011.05.111

    Article  CAS  Google Scholar 

  • Sun J, Li Y, Hu Y, Hou B, Xu Q, Zhang Y, Li S (2012) Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air–cathode microbial fuel cell. Biotechnol Lett 34:2023–2029. doi:10.1007/s10529-012-1002-8

    Article  CAS  Google Scholar 

  • Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air–cathode microbial fuel cell. Bioresour Technol 142:407–414. doi:10.1016/j.biortech.2013.05.039

    Article  CAS  Google Scholar 

  • Sun J, Cai B, Zhang Y, Peng Y, Chang K, Ning X, Liu G, Yao K, Wang Y, Yang Z, Liu J (2016) Regulation of biocathode microbial fuel cell performance with respect to azo dye degradation and electricity generation via the selection of anodic inoculum. Int J Hydrog Energy 41:5141–5150. doi:10.1016/j.ijhydene.2016.01.114

    Article  CAS  Google Scholar 

  • Tan CW, Tan KH, Ong YT, Mohamed AR, Zein SHS, Tan SH (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10:265. doi:10.1007/s10311-012-0356-4

    Article  CAS  Google Scholar 

  • Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, Oon YS, Lehl HK (2015) A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater. Bioresour Technol 197:284–288. doi:10.1016/j.biortech.2015.08.078

    Article  CAS  Google Scholar 

  • You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415. doi:10.1016/j.jpowsour.2006.07.063

    Article  CAS  Google Scholar 

  • Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. doi:10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank UGC-RGNF for support with doctoral fellowship (to Ilamathi R – F1 – 17.1/2014-15/RGNF-2014-15-SC-TAM-58583). The authors gratefully acknowledge the financial support provided by BRNS, Mumbai (2013/37C/47/BRNS/2189-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jayapriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilamathi, R., Jayapriya, J. Microbial fuel cells for dye decolorization. Environ Chem Lett 16, 239–250 (2018). https://doi.org/10.1007/s10311-017-0669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0669-4

Keywords

Navigation