Skip to main content

Advertisement

Log in

Bioelectrochemical technologies for simultaneous treatment of dye wastewater and electricity generation: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Dye-bearing effluent is toxic and negatively impacts the environment and human health. Physical or chemical methods for dye wastewater pre-treatment are of high cost, are extremely energy-consuming and generate toxic sludge. Microbial degradation could be an eco-friendly and cost-effective method to address the bottlenecks associated with the physical and chemical treatments of dye effluent, being that micro-organisms are cost-efficient, easy to culture and harvest locally and are effortlessly mobilizable. Microbial fuel cells have the potential to simultaneously bio-remediate wastewater and generate bioelectricity through the action of micro-organisms and enzymes. These systems have numerous advantages and are highly efficient in the degradation and decolourization of dyes from effluent waste. However, there are inherent shortcomings, which restrict their widescale applicability and have been the focus of sustained scientific investigation over time. The present review focuses on dye degradation by micro-organisms and identifies recent improvements in microbial fuel cell technology to enhance future potential applications. Different key variables influencing bioelectricity from microbial fuel cells are highlighted, which opens up opportunities for further research to improve functionality and overall efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboudi K, Ahmed B, Tyagi VK, Van Lier JB (2021) Occurrence and fate of aromaticity driven recalcitrance in anaerobic treatment of wastewater and organic solid wastes. In: Clean energy and resources recovery, pp 203–226

  • Affat SS (2021) Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: a review. Univ Thi-Qar J Sci 8(1):130–135

    Google Scholar 

  • Agrawal S, Tipre D, Patel B, Dave S (2014) Optimization of triazo acid black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Process Biochem 49(1):110–119

    Article  CAS  Google Scholar 

  • Agrawal S, Tipre D, Patel B, Dave S (2017) Bacterial decolourization, degradation and detoxification of Azo dyes: an eco-friendly approach. In: Microbial Applications Vol 1 pp 91–124. Springer, Cham

  • Ahn Y, Jo SY, Song YC, Lee W, Chung JW (2017) Application of reticulated vitreous carbons doped with low-cost catalysts as the cathodes in microbial fuel cells. KSCE J Civ Eng 21(3):623–628

    Article  Google Scholar 

  • Aiyer KS (2021) Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon 7(1):e05935

    Article  CAS  Google Scholar 

  • Ajaz M, Shakeel S, Rehman A (2020) Microbial use for azo dye degradation—a strategy for dye bioremediation. Int Microbiol 23(2):149–159

    Article  CAS  Google Scholar 

  • Aktas D, Giray SN, Uysal Y (2014) Adsorption of colour from textile wastewater by black locust tree, robinia pseudoacacia (Leguminosae) fruits. J Selcuk Univ Nat Appl Sci, 80–89

  • Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J (2021a) Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. J Hazard Mater 403:123575

    Article  CAS  Google Scholar 

  • Ali SS, Al-Tohamy R, Koutra E, Kornaros M, Khalil M, Elsamahy T, Sun J (2021b) Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnol Biofuels 14(1):1–25

    Article  Google Scholar 

  • Alsantali RI, Raja QA, Alzahrani AY, Sadiq A, Naeem N, Mughal EU, Ahmed SA (2022) Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. Dyes Pigm 199:110050

    Article  CAS  Google Scholar 

  • Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Article  CAS  Google Scholar 

  • Amin FR, Khalid H, El-Mashad HM, Chen C, Liu G, Zhang R (2021) Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci Total Environ 763:143007

    Article  CAS  Google Scholar 

  • Anam M, Gomes HI, Rivers G, Gomes RL, Wildman R (2021) Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation. Sustain Energy Fuels. https://doi.org/10.1039/D1SE00396H

    Article  Google Scholar 

  • Ancona-Escalante W, Tapia-Tussell R, Pool-Yam L, Can-Cauich A, Lizama-Uc G, Solís Pereira S (2018) Laccase-mediator system produced by Trametes hirsuta Bm-2 on lignocellulosic substrate improves dye decolorization. 3 Biotech 8(7):1–8

    Article  Google Scholar 

  • Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DP, Sarma PM, Pant D (2016) An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy 98:153–170

    Article  CAS  Google Scholar 

  • Bayineni VK (2022) Bioremediation of toxic dyes for zero waste. Biotechnol Zero Waste Emerg Waste Manag Tech. https://doi.org/10.1002/9783527832064.ch4

    Article  Google Scholar 

  • Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK (2021) A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng 9(4):105277

    Article  CAS  Google Scholar 

  • Bengyella L, Iftikhar S, Nawaz K, Fonmboh DJ, Yekwa EL, Jones RC, Roy P (2019) Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact. World J Microbiol Biotechnol 35(5):1–14

    Article  Google Scholar 

  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5(11):e02711

    Article  Google Scholar 

  • Bettin C (2006) Applicability and feasibility of incorporating microbial fuel cell technology into implantable biomedical devices. (Doctoral dissertation, The Ohio State University)

  • Bhattacharya A, Goyal N, Gupta A (2017) Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles 21(3):479–490

    Article  CAS  Google Scholar 

  • Boas JV, Oliveira VB, Simões M, Pinto AM (2022) Review on microbial fuel cells applications, developments and costs. J Environ Manag 307:114525

    Article  CAS  Google Scholar 

  • Butler CS, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biotechnol 86(5):1399–1408

    Article  CAS  Google Scholar 

  • Butti SK, Velvizhi G, Sulonen ML, Haavisto JM, Koroglu EO, Cetinkaya AY, Mohan SV (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energy Rev 53:462–476

    Article  CAS  Google Scholar 

  • Cai T, Huang Y, Huang M, Xi Y, Pang D, Zhang W (2019) Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode. Chem Eng J 371:544–553

    Article  CAS  Google Scholar 

  • Castañeda LF, Walsh FC, Nava JL, de León CP (2017) Graphite felt as a versatile electrode material: properties, reaction environment, performance and applications. Electrochim Acta 258:1115–1139

    Article  Google Scholar 

  • Cecconet D, Sabba F, Devecseri M, Callegari A, Capodaglio AG (2020) In situ groundwater remediation with bioelectrochemical systems: a critical review and future perspectives. Environ Int 137:105550

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Kumar G, Mohan SV, Pandey A, Jeon BH, Jang M, Kim SH (2020) Microbial electro-remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. Environ Technol Innov 19:100997

    Article  Google Scholar 

  • Chen BY, Zhang MM, Chang CT, Ding Y, Lin KL, Chiou CS, Xu H (2010) Assessment upon azo dye decolourization and bioelectricity generation by proteus hauseri. Biores Technol 101(12):4737–4741

    Article  CAS  Google Scholar 

  • Chen BY, Ma CM, Han K, Yueh PL, Qin LJ, Hsueh CC (2016) Influence of textile dye and decolourized metabolites on microbial fuel cell-assisted bioremediation. Biores Technol 200:1033–1038

    Article  CAS  Google Scholar 

  • Chen L, Li Y, Yao J, Wu G, Yang B, Lei L, Li Z (2019) Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. J Power Sources 412:86–92

    Article  CAS  Google Scholar 

  • Chiranjeevi P, Patil SA (2020) Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv 39:107468

    Article  CAS  Google Scholar 

  • Choi S, Kim JR, Cha J, Kim Y, Premier GC, Kim C (2013) Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost-effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter. Biores Technol 128:14–21

    Article  CAS  Google Scholar 

  • Choudhury P, Uday USP, Mahata N, Tiwari ON, Ray RN, Bandyopadhyay TK, Bhunia B (2017) Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives. Renew Sustain Energy Rev 79:372–389

    Article  Google Scholar 

  • Cui D, Guo YQ, Lee HS, Wu WM, Liang B, Wang AJ, Cheng HY (2014) Enhanced decolourization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): a design suitable for scaling-up. Biores Technol 163:254–261

    Article  CAS  Google Scholar 

  • Cui D, Zhang M, Wang J, Wang H, Zhao M (2020) Effect of quinoid redox mediators during azo dye decolorization by anaerobic sludge: Considering the catalyzing mechanism and the methane production. Ecotoxicol Environ Saf 202:110859

    Article  CAS  Google Scholar 

  • Dai Q, Zhang S, Liu H, Huang J, Li L (2020) Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry 131:107349

    Article  CAS  Google Scholar 

  • Das D (2018) Microbial fuel cell. Springer, New Delhi, India, pp 21–41

    Book  Google Scholar 

  • Dave SR, Patel TL, Tipre DR (2015) Bacterial degradation of azo dye containing wastes. In: Microbial Degradation of Synthetic Dyes in Wastewaters pp 57–83

  • Demirçalı A, Karcı F, Sari F (2021) Synthesis and absorption properties of five new heterocyclic disazo dyes containing pyrazole and pyrazolone and their acute toxicities on the freshwater amphipod Gammarus roeseli. Color Technol 137(3):280–291

    Article  Google Scholar 

  • Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Ni BJ (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920

    Article  CAS  Google Scholar 

  • ElMekawy A, Hegab HM, Pant D, Saint CP (2018) Bio-analytical applications of microbial fuel cell–based biosensors for onsite water quality monitoring. J Appl Microbiol 124(1):302–313

    Article  CAS  Google Scholar 

  • Ertugay N, Acar FN (2017) Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arab J Chem 10:S1158–S1163

    Article  CAS  Google Scholar 

  • Fan M, Zhang W, Sun J, Chen L, Li P, Chen Y, Shen S (2017) Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. Int J Hydrogen Energy 42(36):22786–22795

    Article  CAS  Google Scholar 

  • Fang Z, Song HL, Cang N, Li XN (2013) Performance of microbial fuel cell coupled constructed wetland system for decolourization of azo dye and bioelectricity generation. Biores Technol 144:165–171

    Article  CAS  Google Scholar 

  • Fatimah A (2020) Role of microorganisms in biodegradation of food additive Azo dyes: a review. Afr J Biotech 19(11):799–805

    Article  Google Scholar 

  • Fei K, Song TS, Wang H, Zhang D, Tao R, Xie J (2017) Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell. Royal Society Open Science 4(10):170798

    Article  Google Scholar 

  • Fernandez ME, Bonelli PR, Cukierman AL, Lemcoff NO (2015) Modeling the biosorption of basic dyes from binary mixtures. Adsorption 21(3):177–183

    Article  CAS  Google Scholar 

  • Fernando E (2014) Treatment of azo dyes in industrial wastewater using microbial fuel cells. (Doctoral dissertation, University of Westminster)

  • Flimban SG, Ismail IM, Kim T, Oh SE (2019) Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability. Energies 12(17):3390

    Article  CAS  Google Scholar 

  • Foad Marashi SK, Kariminia HR (2015) Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. J Environ Health Sci Eng 13(1):1–6

    Article  Google Scholar 

  • Franca RD, Oliveira MC, Pinheiro HM, Lourenço ND (2019) Biodegradation products of a sulfonated azo dye in aerobic granular sludge sequencing batch reactors treating simulated textile wastewater. ACS Sustain Chem Eng 7(17):14697–14706

    Article  CAS  Google Scholar 

  • Gadkari S, Gu S, Sadhukhan J (2019) Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anode. J Power Sources 441:227145

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Qu X, Alvarez PJ, Chaplin BP, Chen W, Crittenden JC, Westerhoff P (2020) Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater–a perspective. Environ Sci Nano 7(8):2178–2194

    Article  CAS  Google Scholar 

  • Garg SK, Tripathi M (2017) Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Res J Microbiol 12(1):1–19

    Article  CAS  Google Scholar 

  • Ghimire U, Sarpong G, Gude VG (2021) Transitioning wastewater treatment plants toward circular economy and energy sustainability. ACS Omega 6(18):11794–11803

    Article  CAS  Google Scholar 

  • Ghosh RS, Ghangrekar MM (2015) Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. Biores Technol 176:8–14

    Article  Google Scholar 

  • Griškonis E, Ilginis A, Jonuškienė I, Raslavičius L, Jonynas R, Kantminienė K (2020) Enhanced performance of microbial fuel cells with anodes from ethylenediamine and phenylenediamine modified graphite felt. Processes 8(8):939

    Article  Google Scholar 

  • Guadie A, Gessesse A, Xia S (2018) Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated rift valley soda lake. Chemosphere 206:59–69

    Article  CAS  Google Scholar 

  • Gul MM, Ahmad KS (2019) Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosens Bioelectron 142:111576

    Article  CAS  Google Scholar 

  • Gul H, Raza W, Lee J, Azam M, Ashraf M, Kim KH (2021) Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere 281:130828

    Article  CAS  Google Scholar 

  • Guo W, Chao S, Chen Q (2020) Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells. Bioprocess Biosyst Eng 43(1):143–151

    Article  CAS  Google Scholar 

  • Heidrich E, Dolfing J, Wade M (2018) Temperature, inocula and substrate: contrasting electroactive consortia, diversity and performance in microbial fuel cells. Bioelectrochemist 119:43–50

    Article  CAS  Google Scholar 

  • Hou B, Sun J, Hu YY (2011) Simultaneous Congo red decolourization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Biores Technol 102(6):4433–4438

    Article  CAS  Google Scholar 

  • Idaka E, Ogawa T, Horitsu H, Tomoyeda M (1978) Degradation of azo compounds by Aeromonas hydrophila var. 24B. J Soc Dyers Colourists 94(3):91–94

    Article  CAS  Google Scholar 

  • Ikram M, Naeem M, Zahoor M, Hanafiah MM, Oyekanmi AA, Ullah R, Gulfam N (2022a) Biological degradation of the Azo dye basic orange 2 by escherichia coli: a sustainable and ecofriendly approach for the treatment of textile wastewater. Water 14(13):2063

    Article  CAS  Google Scholar 

  • Ikram M, Naeem M, Zahoor M, Hanafiah MM, Oyekanmi AA, Islam NU, Sadiq A (2022b) Bacillus subtilis: as an efficient bacterial strain for the reclamation of water loaded with textile Azo dye, orange II. Int J Mol Sci 23(18):10637

    Article  CAS  Google Scholar 

  • Ilamathi R, Jayapriya J (2018) Microbial fuel cells for dye decolourization. Environ Chem Lett 16(1):239–250

    Article  CAS  Google Scholar 

  • Iqbal S, Ansari TN (2021) Extraction and application of natural dyes. Sustain Pract Textile Indus. https://doi.org/10.1002/9781119818915.ch1

    Article  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of colour, reduction of heavy metals, and toxicity from textile dye effluent. Biores Technol 101(1):165–173

    Article  CAS  Google Scholar 

  • Jamee R, Siddique R (2019) Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. Eur J Microbiol Immunol 9(4):114–118

    Article  CAS  Google Scholar 

  • Javed MM, Nisar MA, Ahmad MU (2021) Effect of NaCl and pH on bioelectricityproduction from vegetable waste extract supplemented with cane molasses in dual chambermicrobial fuel cell. Pak J Zool 54(1):247–254

    Article  Google Scholar 

  • Jayaprakash J, Parthasarathy A, Viraraghavan R (2016) Decolourization and degradation of monoazo and diazo dyes in Pseudomonas catalyzed microbial fuel cell. Environ Prog Sustain Energy 35(6):1623–1628

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2012) Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Bioresource Technol 124:23–28

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2015) Challenges to and opportunities in microbial fuel cells. Bioenergy Opp Chall. https://doi.org/10.1201/b18718-11

    Article  Google Scholar 

  • Jayashree S, Ramesh ST, Lavanya A, Gandhimathi R, Nidheesh PV (2019) Wastewater treatment by microbial fuel cell coupled with peroxicoagulation process. Clean Technol Environ Policy 21(10):2033–2045

    Article  CAS  Google Scholar 

  • John J, Dineshram R, Hemalatha KR, Dhassiah MP, Gopal D, Kumar A (2020) Bio-decolorization of synthetic dyes by a halophilic bacterium Salinivibrio sp. Front Microbiol 11:594011

    Article  Google Scholar 

  • Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50(4):1982–1989

    Article  CAS  Google Scholar 

  • Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Al-Dhabi NA, Arasu MV (2016) Catharanthus roseus-mediated zinc oxide nanoparticles against photocatalytic application of phenol red under UV@ 365 nm. Curr Sci 111(10):1811–1815

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Granular activated carbon based microbial fuel cell for simultaneous decolourization of real dye wastewater and electricity generation. New Biotechnol 29(1):32–37

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2012) Efficient decolourization of real dye wastewater andbioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Biores Technol 119:22–27

    Article  CAS  Google Scholar 

  • Kapoor RT, Danish M, Singh RS, Rafatullah M, HPS, A. K. (2021) Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. J Water Process Eng 43:102255

    Article  Google Scholar 

  • Kaur R, Marwaha A, Chhabra VA, Kim KH, Tripathi SK (2020) Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renew Sustain Energy Rev 119:109551

    Article  CAS  Google Scholar 

  • Khan N, Anwer AH, Ahmad A, Sabir S, Sevda S, Khan MZ (2019) Investigation of CNT/PPy-modified carbon paper electrodes under anaerobic and aerobic conditions for phenol bioremediation in microbial fuel cells. ACS Omega 5(1):471–480

    Article  Google Scholar 

  • Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Mazari SA (2021a) A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J Hazard Mater 413:125375

    Article  CAS  Google Scholar 

  • Khan MD, Li D, Tabraiz S, Shamurad B, Scott K, Khan MZ, Yu EH (2021b) Integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye acid blue 29. Sci Total Environ 756:143752

    Article  CAS  Google Scholar 

  • Kumar R, Singh L, Zularisam AW, Hai FI (2018) Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res 42(2):369–394

    Article  Google Scholar 

  • Kumar SS, Kumar V, Malyan SK, Sharma J, Mathimani T, Maskarenj MS, Pugazhendhi A (2019) Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel 254:115526

    Article  CAS  Google Scholar 

  • Kumar A, Dixit U, Singh K, Gupta SP, Beg MS J (2021) Structure and properties of dyes and pigments. In: Dyes and pigments-novel applications and waste treatment. IntechOpen

  • Kundu D, Thakur MS, Patra S (2021) Textile fabric processing and their sustainable effluent treatment using enzymes—insights and challenges. In: Immobilization strategies, pp 645–666. Springer, Singapore

  • Kurade MB, Waghmode TR, Govindwar SP (2011) Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus. J Hazard Mater 192(3):1746–1755

    Article  CAS  Google Scholar 

  • LaBarge N, Yilmazel YD, Hong PY, Logan BE (2017) Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance. Bioelectrochemistry 113:20–25

    Article  CAS  Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. Excli J 14:158–174

    Google Scholar 

  • Lawson K, Rossi R, Regan JM, Logan BE (2020) Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Biores Technol 316:123919

    Article  CAS  Google Scholar 

  • LeBlanc JJ (2019) Effect of electrode surface area on performance of two-chambered microbial fuel cell. University of Louisiana at Lafayette, Lafayette

    Google Scholar 

  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innovation 3(2):275–290

    Article  Google Scholar 

  • Li Z, Zhang X, Lin J, Han S, Lei L (2010) Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system. Biores Technol 101(12):4440–4445

    Article  CAS  Google Scholar 

  • Li B, He Z, Wang M, Wang X (2017) PtSnP/C and PtSn/C as efficient cathode catalysts for oxygen reduction reaction in microbial fuel cells. Int J Hydrogen Energy 42(8):5261–5271

    Article  CAS  Google Scholar 

  • Li J, Zhao Y, Wu A, Wang Y (2019) Investigation of hydrogen evolution on electrodeposited Ni/P coated carbon paper electrode in microbial fuel cell. Int J Electrochem Sci 14:7582–7593

    Article  CAS  Google Scholar 

  • Liu Y, Zhang X, Zhang Q, Li C (2020) Microbial fuel cells: nanomaterials based on anode and their application. Energ Technol 8(9):2000206

    Article  Google Scholar 

  • Lizárraga WC, Mormontoy CG, Calla H, Castañeda M, Taira M, Garcia R, Ramirez P (2022) Complete genome sequence of Shewanella algae strain 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru. Biotechnol Rep 33:e00704

    Article  Google Scholar 

  • Lu M, Chen S, Babanova S, Phadke S, Salvacion M, Mirhosseini A, Bretschger O (2017) Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. J Power Sources 356:274–287

    Article  CAS  Google Scholar 

  • Ma D, Jin T, Xie K, Huang H (2021) An overview of flow cell architectures design and optimization for electrochemical CO2 reduction. J Mater Chem A. https://doi.org/10.1039/D1TA06101A

    Article  Google Scholar 

  • Majumdar R, Shaikh WA, Chakraborty S, Chowdhury S (2022) A review on microbial potential of toxic azo dyes bioremediation in aquatic system. Microbial Biodegrad Bioremed. https://doi.org/10.1016/B978-0-323-85455-9.00018-7

    Article  Google Scholar 

  • Mansoorian HJ, Mahvi A, Nabizadeh R, Alimohammadi M, Nazmara S, Yaghmaeian K (2020) Evaluating the performance of coupled MFC-MEC with graphite felt/MWCNTs polyscale electrode in landfill leachate treatment, and bioelectricity and biogas production. J Environ Health Sci Eng 18(2):1067–1082

    Article  Google Scholar 

  • Maqbool Z (2016) Characterization and application of dye decolourizing metal tolerant bacterial community for treatment of textile wastewater. (Doctoral dissertation, GC University, Faisalabad)

  • Mateo S, Cantone A, Cañizares P, Fernández-Morales FJ, Scialdone O, Rodrigo MA (2018) On the staking of miniaturized air-breathing microbial fuel cells. Appl Energy 232:1–8

    Article  CAS  Google Scholar 

  • Mathuriya AS, Pant D (2019) Assessment of expanded polystyrene as a separator in microbial fuel cell. Environ Technol 40(16):2052–2061

    Article  CAS  Google Scholar 

  • Matsena MT, Mabuse M, Tichapondwa SM, Chirwa EM (2021) Improved performance and cost efficiency by surface area optimization of granular activated carbon in air-cathode microbial fuel cell. Chemosphere 281:130941

    Article  CAS  Google Scholar 

  • Mehra S, Singh M, Chadha P (2021) Adverse impact of textile dyes on the aquatic environment as well as on human beings. Toxicol Int 28(2):165–176

    Article  Google Scholar 

  • Mei X, Xing D, Yang Y, Liu Q, Zhou H, Guo C, Ren N (2017) Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry 117:29–33

    Article  CAS  Google Scholar 

  • Misal SA, Gawai KR (2018) Azoreductase: a key player of xenobiotic metabolism. Bioresources Bioprocess 5(1):1–9

    Article  Google Scholar 

  • Mishra S, Maiti A (2018) The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res 25(9):8286–8314

    Article  CAS  Google Scholar 

  • Misra M, Akansha K, Sachan A, Sachan SG (2020) Removal of dyes from industrial effluents by application of combined biological and physicochemical treatment approaches. In: Combined application of physico-chemical & microbiological processes for industrial effluent treatment plant (pp 365–407) Springer, Singapore

  • Mohajershojaei K, Mahmoodi NM, Khosravi A (2015) Immobilization of laccase enzyme onto titania nanoparticle and decolourization of dyes from single and binary systems. Biotechnol Bioprocess Eng 20(1):109–116

    Article  CAS  Google Scholar 

  • Mohamed A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A (2017a) Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interface Sci 505:682–691

    Article  CAS  Google Scholar 

  • Mohamed HO, Obaid M, Sayed ET, Abdelkareem MA, Park M, Liu Y, Barakat NA (2017b) Graphite sheets as high-performance low-cost anodes for microbial fuel cells using real food wastewater. Chem Eng Technol 40(12):2243–2250

    Article  CAS  Google Scholar 

  • Mohan SV, Srikanth S, Chiranjeevi P, Arora S, Chandra R (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria–microalgae metabolism for the functioning of biofuel cell. Biores Technol 166:566–574

    Article  Google Scholar 

  • Mohan SV, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Biores Technol 215:2–12

    Article  Google Scholar 

  • Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F (2022) Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environ Res 204:112387

    Article  CAS  Google Scholar 

  • Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J (2009) Decolourization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43(13):5137–5143

    Article  CAS  Google Scholar 

  • Mukkera VK, Katuri S (2022) Decolorization of azo dye-contaminated water using microbes: a review. Innovative Trends Hydrol Environ Syst. https://doi.org/10.1007/978-981-19-0304-5_57

    Article  Google Scholar 

  • Najafpour G, Rahimnejad M, Ghoreshi A (2011) The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sources 33:2239–2248

    Article  CAS  Google Scholar 

  • Narayanasamy S, Jayaprakash J (2018) Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chem Eng J 343:258–269

    Article  CAS  Google Scholar 

  • Nikhil GN, Subhash GV, Yeruva DK, Mohan SV (2015) Closed circuitry operation influence on microbial electro-fermentation: proton/electron effluxes on electro-fuels productivity. Biores Technol 195:37–45

    Article  CAS  Google Scholar 

  • Nookwam K, Cheirsilp B, Maneechote W, Boonsawang P, Sukkasem C (2022) Microbial fuel cells with Photosynthetic-Cathodic chamber in vertical cascade for integrated Bioelectricity, biodiesel feedstock production and wastewater treatment. Biores Technol 346:126559

    Article  CAS  Google Scholar 

  • Obileke K, Onyeaka H, Meyer EL, Nwokolo N (2021) Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem Commun 125:107003

    Article  CAS  Google Scholar 

  • Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, Nordin N (2017) Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation. J Hazard Mater 325:170–177

    Article  CAS  Google Scholar 

  • Pande V, Pandey SC, Joshi T, Sati D, Gangola S, Kumar S, Samant M (2019) Biodegradation of toxic dyes: a comparative study of enzyme action in a microbial system. In: Smart Bioremediation Technologies (pp 255–287). Academic Press India

  • Pandit S, Nayak B, Das D (2012) Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Biores Technol 107:97–102

    Article  CAS  Google Scholar 

  • Pathak A, Tyagi V, Singh H (2016) Membrane-less microbial fuel cell: a low-cost sustainable approach for clean energy and environment. In: Singh DP, Kothari R et al (eds) Emerging energy alternatives for sustainable environment. TERI Press, New Delhi, India, pp 35–56

    Google Scholar 

  • Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186(1):713–723

    Article  CAS  Google Scholar 

  • Prabhakar Y, Gupta A, Kaushik A (2021) Eco-friendly bioremediation approach for dye removal from wastewaters: challenges and prospects. Climate Resil Environ Sustain Approach. https://doi.org/10.1007/978-981-16-0902-2_15

    Article  Google Scholar 

  • Punzi M, Anbalagan A, Börner RA, Svensson BM, Jonstrup M, Mattiasson B (2015) Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chem Eng J 270:290–299

    Article  CAS  Google Scholar 

  • Qiao Y, Bao SJ, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3(5):544–553

    Article  CAS  Google Scholar 

  • Raheem A, Sikarwar VS, He J, Dastyar W, Dionysiou DD, Wang W, Zhao M (2018) Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem Eng J 337:616–641

    Article  CAS  Google Scholar 

  • Rahimnejad M, Mostafa G, Ghasem N, Ghoreyshi A, Bakeri G, Nejad SH, Talebnia F (2012) Acetone removal and bioelectricity generation in dual chamber microbial fuel cell. Am J Biochem Biotechnol 8(4):304–310

    Article  CAS  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756

    Article  Google Scholar 

  • Rahimnejad M, Asghary M, Fallah M (2020) Microbial fuel cell (MFC): an innovative technology for wastewater treatment and power generation. In: Bioremediation of industrial waste for environmental safety (pp 215–235). Springer, Singapore

  • Rajan K, Sundramurthy VP, Merine MK (2021) A harmless approach on textile effluent detoxification: bioremediation and recent strategies. In: Strategies and tools for pollutant mitigation (pp 195–219). Springer, Cham

  • Rajhans G, Barik A, Sen SK, Raut S (2020) Integrated biotechnological interventions in textile effluent Treatment. Handbook Solid Waste Manag Sustain Circular Economy. https://doi.org/10.1007/978-981-15-7525-9_111-1

    Article  Google Scholar 

  • Rather LJ, Akhter S, Hassan QP (2018) Bioremediation: green and sustainable technology for textile effluent treatment. In: Sustainable innovations in textile chemistry and dyes (pp 75–91). Springer, Singapore

  • Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605

    Article  CAS  Google Scholar 

  • Roy S, Pandit S (2019) Microbial electrochemical system: principles and application. In: Microbial electrochemical technology (pp 19–48)

  • Rusli SFN, Daud SM, Abu Bakar MH, Loh KS, Masdar MS (2022) Biotic cathode of graphite fibre brush for improved application in microbial fuel cells. Molecules 27(3):1045

    Article  CAS  Google Scholar 

  • Saha P, Rao KVB (2020) Biotransformation of reactive orange 16 by alkaliphilic bacterium Bacillus flexus VITSP6 and toxicity assessment of biotransformed metabolites. Int J Environ Sci Technol 17(1):99–114

    Article  CAS  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A Review J Power Sources 356:225–244

    Article  CAS  Google Scholar 

  • Saranraj P, Sivasakthivelan P, Jayaprakash A, Sivasakthi S (2018) Comparison of bacterial decolourization of reactive textile dyes under static and shaking conditions. Adv Biolo Res 12(6):199–203

    CAS  Google Scholar 

  • Saratale RG, Gandhi SS, Purankar MV, Kurade MB, Govindwar SP, Oh SE, Saratale GD (2013) Decolourization and detoxification of sulfonated azo dye CI Remazol red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115(6):658–667

    Article  CAS  Google Scholar 

  • Saratale RG, Kuppam C, Mudhoo A, Saratale GD, Periyasamy S, Zhen G, Kumar G (2017) Bioelectrochemical systems using microalgae–a concise research update. Chemosphere 177:35–43

    Article  CAS  Google Scholar 

  • Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Kamalesh R, Karishma S (2021) Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.133295

    Article  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131

    Article  Google Scholar 

  • Saxena A, Gupta S (2022) Toxicological impact of and their microbial degraded byproducts on flora and fauna. In: Innovations in environmental biotechnology (pp 319–343). Springer, Singapore

  • Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519

    Article  Google Scholar 

  • Selvaraj V, Karthika TS, Mansiya C, Alagar M (2021) An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct 1224:129195

    Article  CAS  Google Scholar 

  • Sha Y, Mathew I, Cui Q, Clay M, Gao F, Zhang XJ, Gu Z (2016) Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 144:1530–1535

    Article  CAS  Google Scholar 

  • Shahi A, Chellam PV, Verma A, Singh RS (2021) A comparative study on the performance of microbial fuel cell for the treatment of reactive orange 16 dye using mixed and pure bacterial species and its optimization using response surface methodology. Sustain Energy Technol Assess 48:101667

    Google Scholar 

  • Shi Y, Yang Z, Xing L, Zhang X, Li X, Zhang D (2021) Recent advances in the biodegradation of azo dyes. World J Microbiol Biotechnol 37(8):1–18

    Article  Google Scholar 

  • Siddique MBA, Yasir MW, Asjid U, Khalid A (2017) Microbial fuel cells as a novel technology for energy production and wastewater treatment. J Appl Agricult Biotechnol 2(1):1–18

    Google Scholar 

  • Singh A, Kaushik A (2021) Sustained energy production from wastewater in microbial fuel cell: effect of inoculum sources, electrode spacing and working volume. 3 Biotech 11(7):1–8

    Article  Google Scholar 

  • Singh PK, Singh RL (2017) Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5(2):108–126

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolourization and degradation of azo dyes–A review. Int Biodeterior Biodegrad 104:21–31

    Article  CAS  Google Scholar 

  • Singh HM, Pathak AK, Chopra K, Tyagi VV, Anand S, Kothari R (2019) Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment. Biofuels 10(1):11–31

    Article  CAS  Google Scholar 

  • Siwal SS, Zhang Q, Saini AK, Gupta VK, Roberts D, Saini V, Thakur VK (2021) Recent advances in bio-electrochemical system analysis in biorefineries. J Environ Chem Eng 9(5):105982

    Article  CAS  Google Scholar 

  • Sjöblom M, Matsakas L, Krige A, Rova U, Christakopoulos P (2017) Direct electricity generation from sweet sorghum stalks and anaerobic sludge. Ind Crops Prod 108:505–511

    Article  Google Scholar 

  • Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Biores Technol 131:564–571

    Article  CAS  Google Scholar 

  • Sonu K, Syed Z, Sogani M (2020) Up-scaling microbial fuel cell systems for the treatment of real textile dye wastewater and bioelectricity recovery. Int J Environ Stud 77(4):692–702

    Article  CAS  Google Scholar 

  • Srivastava P, Yadav AK, Garaniya V, Lewis T, Abbassi R, Khan SJ (2020) Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: a new process. Sci Total Environ 698:134248

    Article  CAS  Google Scholar 

  • Sugumar M, Dharmalingam S (2020) Statistical optimization of process parameters in microbial fuel cell for enhanced power production using sulphonated polyhedral oligomeric silsesquioxane dispersed sulphonated polystyrene ethylene butylene polystyrene nanocomposite membranes. J Power Sources 469:228400

    Article  CAS  Google Scholar 

  • Sujatha RM, Mary LM, Jayapriya J (2022) Bioremediation of petrochemicals and dye industrial effluents through microbial fuel cells. In: Microbial fuel cells for environmental remediation (pp 211–244). Springer, Singapore

  • Sun J, Hu Y, Bi Y, Cao Y (2009a) Simultaneous decolourization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Biores Technol 100:3185–3192

    Article  CAS  Google Scholar 

  • Sun J, Hu Y, Bi Z, Cao Y (2009b) Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 187(2):471–479

    Article  CAS  Google Scholar 

  • Sun J, Li Y, Hu Y, Hou B, Xu Q, Zhang Y, Li S (2012) Enlargement of anode for enhanced simultaneous azo dye decolourization and power output in air-cathode microbial fuel cell. Biotech Lett 34(11):2023–2029

    Article  CAS  Google Scholar 

  • Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolourization of azo dye and bioelectricity generation in air–cathode microbial fuel cell. Biores Technol 147:407–414

    Article  Google Scholar 

  • Sun J, Cai B, Zhang Y, Peng Y, Chang K, Ning X, Liu J (2016) Regulation of biocathode microbial fuel cell performance with respect to azo dye degradation and electricity generation via the selection of anodic inoculum. Int J Hydrogen Energy 41(9):5141–5150

    Article  CAS  Google Scholar 

  • Tacas ACJ, Tsai PW, Tayo LL, Hsueh CC, Sun SY, Chen BY (2021) Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs). Process Biochem 102:59–71

    Article  CAS  Google Scholar 

  • Tahir CA, Pásztory Z, Agarwal C, Csóka L (2022) Electricity generation and wastewater treatment with membrane-less microbial fuel cell. In: Application of microbes in environmental and microbial biotechnology (pp 235–261). Springer, Singapore

  • Tan CW, Tan KH, Ong YT, Mohamed AR, Zein SHS, Tan SH (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10(3):265–273

    Article  CAS  Google Scholar 

  • Tan L, He M, Song L, Fu X, Shi S (2016) Aerobic decolourization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Biores Technol 203:287–294

    Article  CAS  Google Scholar 

  • Tatiane B, Moreira BD, Czelusniak TBH, Andressa MT, Isidoro HCW, Maciel GM (2021) Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview. Bioresources Bioprocess 8(1):1–29

    Google Scholar 

  • Thangaraj S, Bankole PO, Sadasivam SK, Kumarvel V (2022) Biodegradation of reactive red 198 by textile effluent adapted microbial strains. Arch Microbiol 204(1):1–13

    Article  Google Scholar 

  • Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, Lehl HK (2015) A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater. Biores Technol 197:284–288

    Article  CAS  Google Scholar 

  • Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Lehl HK, Oon YS (2018) Biodegradation of acid orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell: mechanism of biodegradation and electron transfer. Chem Eng J 336:397–405

    Article  CAS  Google Scholar 

  • Tizazu S, Tesfaye G, Andualem B, Wang A, Guadie A (2022) Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. J Environ Manage 323:116235

    Article  CAS  Google Scholar 

  • Tripathi B, Pandit S, Sharma A, Chauhan S, Mathuriya AS, Dikshit PK, Singh S (2022) Modification of graphite sheet anode with iron (II, III) oxide-carbon dots for enhancing the performance of microbial fuel cell. Catalysts 12(9):1040

    Article  CAS  Google Scholar 

  • Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643

    Article  Google Scholar 

  • Umar MF, Rafatullah M, Abbas SZ, Mohamad Ibrahim MN, Ismail N (2021) Advancement in benthic microbial fuel cells toward sustainable bioremediation and renewable energy production. Int J Environ Res Public Health 18(7):3811

    Article  CAS  Google Scholar 

  • Unnikrishnan S, Khan MH, Ramalingam K (2018) Dye-tolerant marine acinetobacter baumannii-mediated biodegradation of reactive red. Water Sci Eng 11(4):265–275

    Article  Google Scholar 

  • Velusamy S, Roy A, Sundaram S, Kumar Mallick T (2021) A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec 21(7):1570–1610

    Article  CAS  Google Scholar 

  • Verma P, Madamwar D (2003) Decolourization of synthetic dyes by a newly isolated strain of serratia maerascens. World J Microbiol Biotechnol 19:615–618

    Article  CAS  Google Scholar 

  • Vishani DB, Shrivastav A (2022) Enzymatic decolorization and degradation of azo dyes. Develop Wastewater Treat Res Process. https://doi.org/10.1016/B978-0-323-85657-7.00020-1

    Article  Google Scholar 

  • Wang Y, Li B, Zeng L, Cui D, Xiang X, Li W (2013) Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens Bioelectron 41:582–588

    Article  CAS  Google Scholar 

  • Wang CT, Sangeetha T, Ding DQ, Chong WT, Yan WM (2018) Implementation of surface modified carbon cloth electrodes with biochar particles in microbial fuel cells. Int J Green Energy 15(13):789–794

    Article  Google Scholar 

  • Winfield J, Gajda I, Greenman J, Ieropoulos I (2016) A review into the use of ceramics in microbial fuel cells. Biores Technol 215:296–303

    Article  CAS  Google Scholar 

  • Xu L, Zhao Y, Doherty L, Hu Y, Hao X (2016) The integrated processes for wastewater treatment based on the principle of microbial fuel cells: a review. Crit Rev Environ Sci Technol 46(1):60–91

    Article  CAS  Google Scholar 

  • Yuan H, Dong G, Li D, Deng L, Cheng P, Chen Y (2018) Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells. Sci Total Environ 636:1081–1088

    Article  CAS  Google Scholar 

  • Zhang Y, Angelidaki I (2015) Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell. Biotechnol Bioeng 112(7):1478–1482

    Article  CAS  Google Scholar 

  • Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Yu C (2011) A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources 196(13):5402–5407

    Article  CAS  Google Scholar 

  • Zhang S, Song HL, Yang XL, Li H, Wang YW (2018) A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Biores Technol 256:224–231

    Article  CAS  Google Scholar 

  • Zhang Y, Liu M, Zhou M, Yang H, Liang L, Gu T (2019) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renew Sustain Energy Rev 103:13–29

    Article  CAS  Google Scholar 

  • Zhen G, Li Y, Tong Y, Yang L, Zhu Y, Zhang W (2016) Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River. China Environ Sci Pollut Res 23(9):8410–8420

    Article  CAS  Google Scholar 

  • Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y (2017) Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog Energy Combust Sci 63:119–145

    Article  Google Scholar 

  • Zheng T, Li J, Ji Y, Zhang W, Fang Y, Xin F, Jiang M (2020) Progress and prospects of bioelectrochemical systems: electron transfer and its applications in the microbial metabolism. Front Bioeng Biotechnol 8:10

    Article  Google Scholar 

  • Zhong K, Wang Y, Wu Q, You H, Zhang H, Su M, Tang J (2020) Highly conductive skeleton graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells. J Power Sources 467:228313

    Article  CAS  Google Scholar 

  • Zhuang M, Sanganyado E, Zhang X, Xu L, Zhu J, Liu W, Song H (2020) Azo dye degrading bacteria tolerant to extreme conditions inhabit nearshore ecosystems: optimization and degradation pathways. J Environ Manag 261:110222

    Article  CAS  Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by pseudomonas KF46. Eur J Biochem 129(1):197–203

    Article  CAS  Google Scholar 

  • Zou Y, Li J, Fu Q, Zhang L, Liao Q, Zhu X (2019) Macroporous hollow nanocarbon shell-supported Fe-N catalysts for oxygen reduction reaction in microbial fuel cellss. Electrochim Acta 320:134590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the World Bank-funded Africa Centres of Excellence for Development Impact (ACE Impact) Project (No. P169064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Oguzie.

Ethics declarations

Conflict of interest

The authors state that they have no competing interests in the manuscript submitted.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Jing Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uduma, R.C., Oguzie, K.L., Chijioke, C.F. et al. Bioelectrochemical technologies for simultaneous treatment of dye wastewater and electricity generation: a review. Int. J. Environ. Sci. Technol. 20, 10415–10434 (2023). https://doi.org/10.1007/s13762-022-04753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04753-0

Keywords

Navigation