Skip to main content
Log in

Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The tribe Forsythieae comprises 2 genera (Forsythia and Abeliophyllum) and 14 species distributed mostly in the Far East. Although Forsythieae is considered monophyletic, with many symplesiomorphic characters, the phylogenetic status of Abeliophyllum remains controversial. We assessed the phylogenetic relationships of Forsythieae, based on a 3.3-kb plastid fragment (trnL-F region and matK gene) and nuclear internal transcribed spacer (ITS) region DNA sequences. We obtained a highly resolved and strongly supported topology with possible outgroups. The topology of the combined tree was congruent with those of the ITS region and matK gene. Maximum parsimony, maximum likelihood, and Bayesian inference tree analyses for the combined data also yielded identical relationships. Combined sequence data strongly supported the monophyly of Forsythieae and the close relationship between Fontanesia and Jasminum. Oleaceae, not Fontanesia, was found to be a sister group to Forsythieae. Moreover, the genus Abeliophyllum was distinctly independent of Forsythia. Three Forsythia lineages were suggested: (a) ONJ (ovata-nakaii-japonica clade), (b) VGE (viridissima-giraldiana-europaea), and (c) KISS (koreana-intermedia-saxatilis-suspensa). Our results indicated that F. × intermedia is not a hybrid between F. suspensa and F. viridissima, but further studies are needed to determine its taxonomic identity. Furthermore, the diverse fruit shapes in Oleaceae are assumed to be the result of parallelism or convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn SK, Chung YJ, Lee ST (1995) Palynotaxonomic studies of Abeliophyllum distichum Nakai and its relative taxa (Oleaceae). Sung Kyun Kwan Univ J Nat Sci 46:27–38

    Google Scholar 

  • Anderson E (1934) Hardy Forsythias. Arnoldia 2:9–14

    Google Scholar 

  • Bailey LH, Bailey EZ (1976) Hortus, 3rd edn. Macmillan Publishing Co, New York, pp 1090–1091

    Google Scholar 

  • Bakker FT, Culham A, Daugherty LC, Gibby M (1999) A trnL-F based phylogeny for species of Pelargonium (Geraniaceae) with small chromosomes. Plant Syst Evol 216:309–324

    Article  CAS  Google Scholar 

  • Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions. Mol Biol Evol 17:1146–1155

    PubMed  CAS  Google Scholar 

  • Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51:625–637

    Article  PubMed  Google Scholar 

  • Besnard G, de Casas RR, Christin P-A, Vargas P (2009) Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104:143–160

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Solitis DS, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Givnish T, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16

    Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: a summary. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution. Rancho Santa Ana Botanic Garden, California, pp 63–75

    Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CW (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46:464–478

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Farris JS, Kallersjo SM, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gravendeel B, Chase MW, de Vogen EF, Roos MC, Mes THM, Bachmann K (2001) Molecular phylogeny of Coelogyne (Epidendroideae, Orchidaceae) based on plastid RLFPs, matK and nuclear ribosomal ITS sequences: evidence for polyphyly. Am J Bot 88:1915–1927

    Article  CAS  Google Scholar 

  • Harborne JB, Green PS (1980) A chemotaxonomic survey of flavonoids in leaves of the Oleaceae. Bot J Linn Soc 81:155–167

    Article  CAS  Google Scholar 

  • Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (1993) Flora of Japan: Vol. IIIa Angiospermae. Dicotyledoneae, Sympetalae (a). Kodansha, Tokyo, pp 122–135

    Google Scholar 

  • Jang CG, Pfosser M (2002) Phylogenetics of Ruscaceae sensu lato based on plastid rbcL and trnL-F DNA sequences. Stapfia 80:333–348

    Google Scholar 

  • Jeandroz S, Roy A, Bousquet J (1997) Phylogeny and phylogeography of the circumpolar genus Fraxinus (Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 7:241–251

    Article  PubMed  CAS  Google Scholar 

  • Jensen SR, Franzyk H, Wallander E (2002) Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochemistry 60:213–231

    Article  PubMed  CAS  Google Scholar 

  • Johnson LAS (1957) A review of the family Oleaceae. Contributions from the New South Wales National Herbarium 2:395–418

    Google Scholar 

  • Kim KJ (1999) Molecular phylogeny of Forsythia (Oleaceae) based on chloroplast DNA variation. Plant Syst Evol 218:113–123

    Article  CAS  Google Scholar 

  • Kim DK, Kim JH (2004) Numerical taxonomy of tribe Forsythieae (Oleaceae) in Korea. Korean J Plant Taxon 34:189–203

    Google Scholar 

  • Kim KJ, Lee HL, Kim YD (2000) Phylogenetic position of Abeliophyllum based on nuclear ITS sequence data. Korean J Plant Taxon 30:235–250

    Google Scholar 

  • Knapp P (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022

    Article  PubMed  CAS  Google Scholar 

  • Lee ST (1984) A systematic study of Korean Forsythia species. Korean J Plant Taxon 14:87–107

    Google Scholar 

  • Lee WT (1996) Lineamenta Florae Koreae. Academy Press, Seoul, p 1699

    Google Scholar 

  • Lee ST, Park EJ (1982a) A cladistic analysis of the Korean Oleaceae. Korean J Bot 25:57–64

    Google Scholar 

  • Lee ST, Park EJ (1982b) A palynotaxonomic study of the Korean Oleaceae. Korean J Plant Taxon 12:1–11

    Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  PubMed  CAS  Google Scholar 

  • Li J, Alexander JH, Zhang D (2002) Paraphyletic Syringa (Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Syst Bot 27:592–597

    Google Scholar 

  • Lim SC, Ko SC (1989) A cytotaxonomical study on some species of Korean Forsythia. Korean J Plant Taxon 19:229–239

    Google Scholar 

  • Mabberley DJ (1987) The plant book. Cambridge University Press, Cambridge

    Google Scholar 

  • Maddison WP, Maddison DR (2000) MacClade: analysis of phylogeny and character evolution, ver. 4.0. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Maekawa F (1962) Major polyploidy with special reference to the phylogeny of Oleaceae. J Jap Bot 37:25–27

    Google Scholar 

  • Melchior H (1964) A. Engler’s Syllabus der Pflanzenfamilien. II. Borntraeger, Berlin, pp 403–405

    Google Scholar 

  • Nakai T (1919) Genus novum Oleacearum in Corea media inventum. Bot Mag Tokyo 33:153–154

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Aldrey JLN (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • O’Mara J (1930) Chromosome numbers in the genus Forsythia. J Arnold Arb 11:14–15

    Google Scholar 

  • Piechura JE, Fairbrothers DE (1983) The use of protein-serological characters in the systematics of the family Oleaceae. Am J Bot 75:780–789

    Article  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America. Macmillan Publishing Co., New York, pp 765–793

    Google Scholar 

  • Rohwer JG (1996) Die Frucht und Samenstrukturen der Oleaceae. Bibliotheca Botanica 148:1–177

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sax K, Abbe EC (1932) Chromosome numbers and the anatomy of the secondary xylem in the Oleaceae. J Arnold Arb 13:37–47

    Google Scholar 

  • Smith JF (2000) A phylogenetic analysis of tribes Beslerieae and Napeantheae (Gesneriaceae) and evolution of fruit types: parsimony and maximum likelihood analyses of ndhF sequences. Syst Bot 25:72–81

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). 4.0 Beta. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tae KH, Kim DK, Kim JH (2005) Genetic variations and phylogenetic relationships of tribe Forsythieae (Oleaceae) based on RAPD analysis. Korean J Plant Res 8:135–144

    Google Scholar 

  • Taylor H (1945) Cyto-taxonomy and phylogeny of the Oleaceae. Brittonia 5:337–369

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst Evol 273:25–49

    Article  Google Scholar 

  • Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot 87:1827–1841

    Article  PubMed  CAS  Google Scholar 

  • Willis JC (1973) A dictionary of the flowering plants and ferns, 8th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Wu ZY, Raven PH (1996) Flora of China. Myrsinaceae through Loganiaceae, vol 15. Missouri Botanic Garden Press, St. Louis, pp 272–319

    Google Scholar 

  • Yamashita J, Tamura MN (2000) Molecular phylogeny of the Convallariaceae (Asparagales). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 387–400

    Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. PNAS 26:15507–15512

    Article  Google Scholar 

  • Yue JP, Sun H, David AB, Li JH, Ihsan AAS, Richard REE (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. JSE 47:402–415

    Google Scholar 

  • Zjhra ML, Sytsma KJ, Olmstead RG (2004) Delimitation of Malagasy tribe Coleeae and implications for fruit evolution in Bignoniaceae inferred from a chloroplast DNA phylogeny. Plant Syst Evol 245:55–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Kyungwon University Research Fund in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hwan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DK., Kim, JH. Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences. J Plant Res 124, 339–347 (2011). https://doi.org/10.1007/s10265-010-0383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0383-9

Keywords

Navigation