Skip to main content
Log in

Molecular phylogeny ofForsythia (Oleaceae) based on chloroplast DNA variation

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Phylogenetic relationships of ten wild species and several cultivars ofForsythia were reconstructed based on the chloroplast (cp) DNA variation. A total of 216 cpDNA variants, 44 of which were potentially phylogenetically informative, was detected using 24 restriction endonucleases. Phylogenetic analysis usingFontanesia andAbeliophyllum as outgroups revealed four well defined species groups in the genus: 1)F. suspensa, 2)F. europaea — F. giraldiana, 3)F. ovata — F. japonica — F. viridissima, and 4)F. koreana — F. manshurica — F. saxatilis. The amount of support for each monophyletic group was evaluated by various methods including character number, decay analysis, parsimony bootstrapping, Neighbour-Joining (NJ) — bootstrapping, NJ-jackknifing, and the topology-dependent permutation tail probability (T-PTP) test. The data do not support the hybrid origin ofF. intermedia fromF. suspensa andF. viridissima. The disjunctly distributed European species,F. europaea, was identified as a sister species of the ChineseF. giraldiana and it was probably derived through recent long distance dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E. (1934) Hardy Forsythias. Arnoldia 2(3): 9–14.

    Google Scholar 

  • Bass P., Esser P. M., van der Westen M. E. T., Zandee M. (1988) Wood anatomy of theOleaceae. Int. Assoc. Wood Anat. Bull. 9: 103–182.

    Google Scholar 

  • Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Bremer K. (1994) Branch support and tree stability. Cladistics 10: 295–304.

    Google Scholar 

  • Chang M., Qui L., Green P. S. (1996)Oleaceae. In: We Z., Raven P. H. (eds.) Flora of China, 15. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 272–319.

    Google Scholar 

  • Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Doyle J. J., Doyle J. L., Brown A. H. D. (1990) A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenusGlycine): congruence with morphological and crossing groups. Evolution 44: 371–389.

    Google Scholar 

  • Faith D. P. (1991) Cladistics permutation tests for monophyly and nonmonophyly. Syst. Zool. 40: 366–375.

    Google Scholar 

  • Faith D. P., Cranston P. (1991) Could a cladogram of this sort have arisen by chance alone? On permutation tests for cladistics structure. Cladistics 7: 1–28.

    Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Green P. S. (1972)Forsythia. In: Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Europaea 3. Cambridge University Press, Cambridge, p. 53.

    Google Scholar 

  • Harborne J. B., Green P. S. (1980) A chemotaxonomic survey of flavonoids in leaves of theOleaceae. Bot. J. Linn. Soc. 81: 155–167.

    Google Scholar 

  • Hillis D. M. (1991) Discriminating between phylogenetic singal and random noise in DNA sequences. In: Miyamoto B. K., Cracraft J. (eds.) Phylogenetic analysis of DNA sequence data. Oxford University Press, New York, pp. 278–294.

    Google Scholar 

  • Hillis D. M., Dixon M. T. (1989) Vertebrate phylogeny: evidence from 28S ribosomal DNA sequences. In: Fernholm B., Bremer K., Jornvall H. (eds.) The hierarchy of life. Elsevier, Amsterdam, pp. 355–367.

    Google Scholar 

  • Hillis D. M., Huelsenbeck J. P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J. Heredity 83: 189–195.

    Google Scholar 

  • Jansen R. K., Wee J. L., Millie D. (1998) Comparative utility of chloroplast DNA restriction site and DNA sequence data for phylogenetic studies in plants. In: Soltis D., Soltis P., Doyle J. (eds.) Molecular systematics of plants II-DNA sequencing. Kluwer Academic Pub., New York, pp. 87–100.

    Google Scholar 

  • Johnson L. A. S. (1957) Review of the familyOleaceae. Contrib. New South Wales Natl. Herb. 2: 395–418.

    Google Scholar 

  • Kim K.-J., Jansen R. K. (1994) Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst. Evol. 190: 157–185.

    Google Scholar 

  • Kim K.-J., Jansen R. K. (1998) A chloroplast DNA phylogeny of lilacs (Syringa-Oleaceae): plastome groups show a strong correlation with crossing groups. Amer. J. Bot. 82: 1338–1351.

    Google Scholar 

  • Kim K.-J., Turner B. L., Jansen R. K. (1992) Phylogenetic and evolutionary implications of interspecific chloroplast DNA variation inKrigia (Asteraceae-Lactuceae). Syst. Bot. 17: 449–469.

    Google Scholar 

  • Lee S. (1984) A systematic study of KoreanForsythia species. Korean J. Pl. Taxon. 19: 229–230.

    Google Scholar 

  • Lee S., Park E. J. (1982) A palynotaxonomic study of the KoreanOleaceae. Korean J. Pl. Taxon. 12: 1–11.

    Google Scholar 

  • Lee Y. L. (1996) Flora of Korea. Kyohaksa, Seoul.

    Google Scholar 

  • Lim S. C., Ko S. C. (1989) A cytotaxonomical study on some species of KoreanForsythia. Korean J. Pl. Taxon. 19: 229–230.

    Google Scholar 

  • Maddison D. R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool. 40: 315–328.

    Google Scholar 

  • Melchior H. (1964) A. Engler's Syllabus der Pflanzenfamilien, 2. Borntraeger, Berlin.

    Google Scholar 

  • Nakai T. (1919) Genus novum Oleacearum in Corea media inventum. Bot. Mag. (Tokyo) 33: 153–154.

    Google Scholar 

  • Nei M. (1987) Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei M., Li W.-H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.

    PubMed  Google Scholar 

  • Olmstead R. G., Palmer J. D. (1992) A chloroplast DNA phylogeny of theSolanaceae: subfamilial relationships and character evolution. Ann. Missouri Bot. Gard. 79: 346–360.

    Google Scholar 

  • Olmstead R. G., Palmer J. D. (1994) Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot. 81: 1205–1224.

    Google Scholar 

  • Palmer J. D. 1986: Isolation and structural analysis of chloroplast DNA. Meth. Enzymol. 118: 167–186.

    Google Scholar 

  • Palmer J. D., Jansen R. K., Michaels H. J., Chase M. W., Manhart J. W. (1988) Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75: 1180–1206.

    Google Scholar 

  • Palmer J. D., Downie S. R., Nugent J. M., Brandt P., Unseld M., Klein M., Brennicke A., Schuster W., Broner T. (1994) The chloroplast and mitochondrial DNAs ofArabidopsis thaliana: conventional genomes in an unconventional plant. In: Sommerville C., Meyerowitz E. M. (eds.)Arabidopsis. Cold Spring Harbor Press, New York, pp. 37–62.

    Google Scholar 

  • Richards A. J. (1997) Plant breeding systems, 2nd edn. Chapman & Hall, London.

    Google Scholar 

  • Sanderson M. J. (1989) Confidence limits on phylogenies: the bootstrap revisited. Cladistics 5: 113–129.

    Google Scholar 

  • Sax K. (1947) Plant breeding at the Arnold Arboretum. Arnoldia 7(3): 9–12.

    Google Scholar 

  • Soltis D. E., Kuzoff R. K. (1995) Discordance between nuclear and chloroplast phylogenies in theHeuchera group (Saxifragaceae). Evolution 49: 727–742.

    Google Scholar 

  • Swofford D. L. (1998) PAUP: phylogenetic analysis using parsimony, version 4.0*. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Taylor H. (1945) Cyto-taxonomy and phylogeny ofOleaceae. Brittonia 5: 337–369.

    Google Scholar 

  • Wallace R. S., Jansen R. K. (1990) Systematic and evolutionary implications of chloroplast DNA variation in the genusMicroseris D. Don (Asteraceae:Lactuceae). Syst. Bot. 15: 606–616.

    Google Scholar 

  • Wendel J. F. (1989) New world tetraploid cottons contains Old World cytoplasm. Proc. Natl. Acad. Sci. USA 86: 4132–4136.

    Google Scholar 

  • Wendel J. F., Albert V. A. (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst. Bot. 17: 115–143.

    Google Scholar 

  • Wyman D. (1959) These are the Forsythias. Arnoldia 19(3): 11–14.

    Google Scholar 

  • Wyman D. (1961) Registration lists of cultivar names of Forsythias. Arnoldia 21: 39–42.

    Google Scholar 

  • Yamazaki T. (1993)Oleaceae. In: Iwatsuki K., Yamazaki T., Boufford D. E., Ohba, H. (eds.) Flora of Japan, 3. Kodansa, Tokyo, pp. 122–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KJ. Molecular phylogeny ofForsythia (Oleaceae) based on chloroplast DNA variation. Pl Syst Evol 218, 113–123 (1999). https://doi.org/10.1007/BF01087039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01087039

Key words

Navigation