Skip to main content

Advertisement

Log in

A multiscale approach to the elastic moduli of biomembrane networks

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We develop equilibrium fluctuation formulae for the isothermal elastic moduli of discrete biomembrane models at different scales. We account for the coupling of large stretching and bending strains of triangulated network models endowed with harmonic and dihedral angle potentials, on the basis of the discrete-continuum approach presented in Schmidt and Fraternali (J Mech Phys Solids 60:172–180, 2012). We test the proposed equilibrium fluctuation formulae with reference to a coarse-grained molecular dynamics model of the red blood cell (RBC) membrane (Marcelli et al. in Biophys J 89:2473–2480, 2005; Hale et al. in Soft Matter 5:3603–3606, 2009), employing a local maximum-entropy regularization of the fluctuating configurations (Fraternali et al. in J Comput Phys 231:528–540, 2012). We obtain information about membrane stiffening/softening due to stretching, curvature, and microscopic undulations of the RBC model. We detect local dependence of the elastic moduli over the RBC membrane, establishing comparisons between the present theory and different approaches available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrojo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65: 2167–2202

    Article  Google Scholar 

  • Borelli MES, Kleinert H, Schakel AMJ (1999) Derivative expansion of one-loop effective energy of stiff membranes with tension. Phys Lett A 253: 239–246

    Article  Google Scholar 

  • Cyron CJ, Arrojo M, Ortiz M (2009) Smooth, second-order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79: 1605–1632

    Article  MATH  Google Scholar 

  • Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng 26: 1232–1244

    Article  Google Scholar 

  • Discher DE, Boal DH, Boey SK (1997) Phase transitions and anisotropic responses of planar triangular nets under large deformation. Phys Rev E 55(4): 4762–4772

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2009) General coarse-grained red blood cell models: I. mechanics. ArXiv e-prints

  • Fraternali F, Lorenz C, Marcelli G (2012) On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach. J Comput Phys 231: 528–540

    Article  MATH  Google Scholar 

  • Gibson L, Ashby M (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Mat 382(1782): 43–59

    Article  Google Scholar 

  • Gompper G, Kroll D (1996) Random surface discretization and the renormalization of the bending rigidity. J Phys I Fr 6: 1305–1320

    Article  Google Scholar 

  • Hale J, Marcelli G, Parker K, Winlowe C, Petrov G (2009) Red blood cell thermal fluctuations: comparison between experiment and molecular dynamics simulations. Soft Matter 5: 3603–3606

    Article  Google Scholar 

  • Hartmann D (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9: 1–17

    Article  Google Scholar 

  • Helfrich W (1985) Effect of thermal undulations on the rigidity of fluid membranes and interfaces. J Phys 46: 1263–1268

    Article  Google Scholar 

  • Helfrich W (1998) Stiffening of fluid membranes and entropy loss of membrane closure: two effects of thermal undulations. Eur Phys J B 1: 481–489

    Article  Google Scholar 

  • Helfrich W, Kozlov MM (1993) Bending tensions and the bending rigidity of fluid membranes. J Phys II Fr 3: 287–292

    Article  Google Scholar 

  • Helfrich W, Servuss R (1984) Untlulations, steric interactian and cohesion of fldd untlulations, steric interaction and cohesion of fluid membranes. Nuovo Cimento 1: 137–151

    Article  Google Scholar 

  • Hess S, Kröger M, Hoover W (1997) Shear modulus of fluids and solids. Phys A 239

  • Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Kleinert H (1986) Thermal softening of curvature elasticity in membranes. Phys Lett A 114: 263–268

    Article  Google Scholar 

  • Kohyama T (2009) Simulations of flexible membranes uding a coarse-grained particle-based model with spontaneous curvature variables. Phys A 388: 3334–3344

    Article  Google Scholar 

  • Kühnel W (2002) Differential geometry, curves-surfaces-manifolds. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Lee J, Discher D (2001) Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys J 81: 3178–3192

    Article  Google Scholar 

  • Lipowsky R, Girardet M (1990) Shape fluctuations of polymerized or solidlike membranes. Phys Rev Lett 65(23): 2893–2896

    Article  Google Scholar 

  • Lutsko J (1989) Generalized expressions for the calculation of the elastic constants by computer simulation. J Appl Phys 8: 2991–2997

    Article  Google Scholar 

  • Marcelli G, Parker H, Winlove P (2005) Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. Biophys J 89: 2473–2480

    Article  Google Scholar 

  • Mecke KR (1995) Bending rigidity of fluctuating membranes. Z Phys B Condens Mater 97: 379–387

    Article  Google Scholar 

  • Müller M, Katsov K, Schick M (2006) Biological and syntetic membranes: what can be learned from a coarse-grained description?. Phys Rep 434: 113–176

    Article  Google Scholar 

  • Munkres J (1984) Elements of algebraic topology. Addison-Wesley, Menlo Park, CA

    MATH  Google Scholar 

  • Naghdi PM (1972) The theory of shells and plates. In: Flügge’s S (eds) Handbuch der Physik, Vol. VIa/2, C. Trusdell Ed.. Springer, Berlin, pp 425–640

    Google Scholar 

  • Nelson D, Piran T, Weinberg S, (eds) (2004) Statistical mechanics of membranes and surfaces, 2nd edn. World Scientific, Singapore

  • Ogden RW (1984) Non-linear elastic deformations. Dover, Mineola

    Google Scholar 

  • Onck P, Koeman T, van Dillen T, van der Glessen E (2005) Alternative explanation of stiffening in cross-linked semiflexible networks. Phys Rev Lett 95

  • Peliti L, Leibler S (1985) Effects of thermal fluctuations on systems with small surface tensionl fluctuations on systems with small surface tension. Phys Rev Lett 54: 1690–1693

    Article  Google Scholar 

  • Pinnow H, Helfrich W (2000) Effect of thermal undulations on the bending elasticity and spontaneous curvature of fluid membranes. Eur Phys J E 3: 149–157

    Article  Google Scholar 

  • Pivkin I, Karniadakis G (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101

  • Ray J, Rahman A (1984) Statistical ensembles and molecular dynamics studies of anisotropic solids. J Chem Phys 80(9): 4423–4428

    Article  Google Scholar 

  • Schmidt B (2006) A derivation of continuum nonlinear plate theory from atomistic models. SIAM Multiscale Model Simul 5: 664–694

    Article  MATH  Google Scholar 

  • Schmidt B (2008) On the passage from atomic to continuum theory for thin films. Arch Ration Mech Anal 190: 1–55

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt B, Fraternali F (2012) Universal formulae for the limiting elastic energy of static membrane networks. J Mech Phys Solids 60: 172–180

    Article  MathSciNet  Google Scholar 

  • Schöffel P, Möser MH (2001) Elastic constants of quantum solids by path integral simulations. Phys Rev B 63(224108): 1–9

    Google Scholar 

  • Seung H, Nelson D (1988) Defects in flexible membranes with crystalline order. Phys Rev A 38: 1005–1018

    Article  Google Scholar 

  • Smith W, Forester T (1999) The dl_poly_2 molecular simulation package. http://www.cse.clrc.ac.uk/msi/software/DL_POLY

  • Squire D, Holt A, Hoover W (1969) Isothermal elastic constants for argon. Theory and monte carlo calculations. Physica 42: 388–397

    Article  Google Scholar 

  • Tu ZC, Ou-Yang ZC (2008) Elastic theory of low-dimensionale continua and its application in bio- and nano-structures. J Comput Theor Nanosci 5: 422–448

    Article  Google Scholar 

  • Yoshimoto K, Papakonstantopoulos G, Lutsko J, de Pablo J (2005) Statistical calculation of the elastic moduli for atomistic models. Phys Rev B 71(181108): 1–6

    Google Scholar 

  • Zhou Z, Joós B (1996) Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Phys Rev B 54(6): 3841–3850

    Article  Google Scholar 

  • Zhou Z, Joós B (1997) Mechanisms of membrane rupture: from cracks to pores. Phys Rev B 56: 2997–3009

    Article  Google Scholar 

  • Zhou Z, Joós B (1999) Convergence issues in molecular dynamics simulations of highly entropic materials. Model Simul Mater Sci Eng 7: 383–395

    Article  Google Scholar 

  • Zhou Z, Joós B (2002) Fluctuation formulas for the elastic constants of an arbitrary system. Phys Rev B 66

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fraternali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraternali, F., Marcelli, G. A multiscale approach to the elastic moduli of biomembrane networks. Biomech Model Mechanobiol 11, 1097–1108 (2012). https://doi.org/10.1007/s10237-012-0376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0376-9

Keywords

Navigation