Skip to main content
Log in

A chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus interruptus: Purification and Biochemical Characterization

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A chymotrypsin was purified from the gastric juice of California spiny lobster (Panulirus interrutpus), using preparative electrophoresis and affinity chromatography on agarose-p-aminobenzamidine. The molecular mass was estimated by polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing conditions to be 28 kDa. Chymotrypsin activity was totally inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin. Lobster chymotrypsin had optimal pH 7.0–8.0 and temperature of 55 °C. The enzyme is highly stable under a wide range of pH (retaining up to 80 % of activity after 1 h of incubation at pH 3.0, 5.0, and 12.0), showing higher stability at pH 8.0, and was inactivated after 20 min at 55 °C. Lobster chymotrypsin was able to hydrolyze protein substrates at as low as pH 3.0. These results are consistent with the findings of enzyme stability. Activity was assessed after incubation of enzyme with different organic solvents (in the range of 10–50 %); when tested in the presence of acetone, ethanol, propanol, and butanol, lobster chymotrypsin residual activity was >80 %; whereas in the presence of dimethyl sulfoxide (DMSO) and toluene, lobster chymotrypsin residual activity was <80 %. Deduced amino acid sequence, corroborated by mass spectrometry, was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balti R, Bougherra F, Bougatef A, Hayet BK, Nedjar-Arroume N, Dhulster P, Guillochon D, Nasri M (2012) Chymotrypsin from the hepatopancreas of cuttlefish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: purification and biochemical characterisation. Food Chem 130:475–484

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Yañez FJ, Pacheco-Aguilar R, Garcia-Carreño FL, Navarrete-Del Toro MDLA (2004) Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem 85:343–350

    Article  Google Scholar 

  • Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA, Félix López M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caeruleus). Food Chem 99:252–259

    Article  Google Scholar 

  • Castillo-Yañez FJ, Pacheco-Aguilar R, Lugo-Sanchez ME, Garcia-Sanchez G, Quintero Reyes IE (2009) Biochemical characterization of an isoform of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea), and comparison with bovine chymotrypsin. Food Chem 112:634–639

    Article  Google Scholar 

  • Celis-Guerrero LE, García-Carreño FL, Navarrete Del Toro MA (2004) Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar Biotechnol 6:262–269

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis M-A, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925

    Article  PubMed Central  PubMed  Google Scholar 

  • DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  CAS  PubMed  Google Scholar 

  • Di Cera E (2009) Serine proteases. IUBMB Life 61:510–515

    Article  PubMed Central  PubMed  Google Scholar 

  • Díaz-Tenorio LM, García-Carreño FL, Navarrete del Toro MA (2006) Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebr Biol 125:125–135

    Article  Google Scholar 

  • Eberhardt J (1992) Isolation and characterization of 5 serine proteases with trypsin-like, chymotrypsin-like and elastase-like characteristics from the gut of the lugworm Arenicola marina (L.) (Polychaeta). J Comp Physiol B 162:159–167

    Article  CAS  Google Scholar 

  • El Hadj AN, Hmidet N, Zouari-Fakhfakh N, Ben Khaled H, Nasri M (2010) Alkaline chymotrypsin from striped seabream (Lithognathus mormyrus) viscera: purification and characterization. J Agric Food Chem 58:9787–9792

    Article  Google Scholar 

  • Fong WP, Chan EY, Lau KK (1998) Isolation of two chymotrypsins from grass carp. Biochem Mol Biol Int 45:409–418

    CAS  PubMed  Google Scholar 

  • García-Carreño F, Dimes L, Haard N (1993) Substrate-gel electrophoresis for composition of molecular weight of proteinases or protteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Geok LP, Razak CNA, Abd Rahman RNZ, Basri M, Salleh AB (2003) Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem Eng J 13:73–77

    Article  CAS  Google Scholar 

  • Gráf L, Szilágyi L, Venekei I (2013) Chymotrypsin. In: Rawlings ND, Salvesen G (eds) Handbook of Proteolytic Enzymes, 3rd edn. Academic Press, San Diego, p 2626–2633

  • Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4523

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Cortés P, Whitaker JR, García-Carreño F (1997) Purification and characterization of chymotrypsin from Penaeus vannamei. J Food Biochem 21:497–514

    Article  Google Scholar 

  • Heu MS, Kim HR, Pyeun JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp Biochem Physiol B: Biochem Mol Biol 112:557–567

    Article  CAS  Google Scholar 

  • Klomklao S (2008) Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci Technol 30:37–46

    Google Scholar 

  • Kristjansson MM (1991) Purification and characterization of trypsin from the pyloric ceca of rainbow trout (Oncorhynchus mykiss). J Agric Food Chem 39:1738–1742

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Le Chevalier P, Sellos D, Van Wormhoudt A (1995) Purification and partial characterization of chymotrypsin-like proteases from the digestive gland of the scallop Pecten maximus. Comp Biochem Physiol B Biochem Mol Biol 110:777–784

    Article  Google Scholar 

  • Li GY, Pukunaga S, Takenouchi K, Nakamura F (2005) Comparative study of the physiological properties of collagen, gelatin and collagen hydrolysate as cosmetic materials. Int J Cosmet Sci 27:101–106

    Article  PubMed  Google Scholar 

  • Lima CA, Rodrigues PMB, Porto TS, Viana DA, Lima Fihlo JL, Porto ALF, Carneiro da Cunha MG (2009) Production of a collagenase from Candida albicans URM3622. Biochem Eng J 43:315–320

    Article  CAS  Google Scholar 

  • Mares-Guia M, Shaw E (1965) Studies on the Active Center of Trypsin: the binding of amidines and guanidines as models of the substrate side chain. J Biol Chem 240:1579–1585

    CAS  PubMed  Google Scholar 

  • Muhlia-Almazán A, García-Carreño FL (2002) Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 133:383–394

    Article  PubMed  Google Scholar 

  • Muhlia-Almazán A, Sánchez-Paz A, García-Carreño FL (2008) Invertebrate trypsins: a review. J Comp Physiol B 178:655–672

    Article  PubMed  Google Scholar 

  • Navarrete del Toro MDLA, García-Carreño F, López MD, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool A Comp Exp Biol 305:645–654

    Article  Google Scholar 

  • Navarrete del Toro MA, García-Carreño FL, Córdova-Murueta JH (2011) Comparison of digestive proteinases in three penaeids. Aquaculture 317:99–106

    Article  CAS  Google Scholar 

  • Navarrete-del-Toro MA, García-Carreño Fernando L, Hernández-Cortés P, Molnár T, Gráf L (2015) Biochemical characterisation of chymotrypsin from the midgut gland of yellowleg shrimp, Penaeus Californiensis. Food Chem 173:147–155

    Article  CAS  PubMed  Google Scholar 

  • Neurath H (1957) The activation of zymogens. In: Anfisen CB, Anson ML, Bailey K, Edsall JT (eds) Advances in Protein Chemistry. Academic Press, New York, p 319–386

  • Perera E, Fraga I, Carrillo O, Díaz-Iglesias E, Cruz R, Báez M, Galich GS (2005) Evaluation of practical diets for the Caribbean spiny lobster Panulirus argus (Latreille, 1804): effects of protein sources on substrate metabolism and digestive proteases. Aquaculture 244:251–262

    Article  CAS  Google Scholar 

  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Carrillo O, Galich GS (2008a) Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comp Biochem Physiol B Biochem Mol Biol 150:247–254

    Article  PubMed  Google Scholar 

  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS (2008b) Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp Biochem Physiol B Biochem Mol Biol 151:250–256

    Article  PubMed  Google Scholar 

  • Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perona JJ, Craik CS (1997) Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem 272:29987–29990

    Article  CAS  PubMed  Google Scholar 

  • Raae AJ, Walther BT (1989) Purification and characterization of chymotrypsin, trypsin and elastase like proteinases from cod (Gadus morhua L.). Comp Biochem Physiol B 93:317–324

    CAS  PubMed  Google Scholar 

  • Rojo L, Muhlia-Almazan A, Saborowski R, García-Carreño F (2010a) Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. Mar Biotechnol 12:696–707

    Article  CAS  PubMed  Google Scholar 

  • Rojo L, Sotelo-Mundo R, García-Carreño F, Gráf L (2010b) Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp Biochem Physiol B Biochem Mol Biol 157:394–400

    Article  PubMed  Google Scholar 

  • Roy P, Colas B, Durand P (1996) Purification, kinetical and molecular characterizations of a serine collagenolytic protease from greenshore crab (Carcinus maenas) digestive gland. Comp Biochem Physiol B Biochem Mol Biol 115:87–95

    Article  CAS  PubMed  Google Scholar 

  • Rudenskaya GN (2003) Brachyurins, serine collagenolytic enzymes from crabs. Russ J Bioorg Chem 29:101–111

    Article  CAS  Google Scholar 

  • Saborowski R, Sahling G, Navarrete del Toro MA, Walter I, García-Carreño FL (2004) Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. J Mol Catal B Enzym 30:109–118

    Article  CAS  Google Scholar 

  • Shi XZ, Zhao XF, Wang JX (2008) Molecular cloning and expression analysis of chymotrypsin-like serine protease from the Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 25:589–597

    Article  CAS  PubMed  Google Scholar 

  • Stauffer C (1989) Enzyme assays for food scientist. Chapman and Hall, New York, p 61–76

  • Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 316:213–229

    Article  CAS  Google Scholar 

  • Tsai I-H, Chuano K-L, Chuang JL (1986) Chymotrypsins in digestive tracts of crustacean decapods (Shrimps). Comp Biochem Physiol B 85:235–239

    Google Scholar 

  • Tsai IH, Lu PJ, Chuang JL (1991) The midgut chymotrypsins of shrimps (Penaeus monodon, Penaeus japonicus and Penaeus penicillatus). Biochim Biophys Acta 1080:59–67

    Article  CAS  PubMed  Google Scholar 

  • Tsu CA, Perona JJ, Schellenberger V, Turck CW, Craik CS (1994) The substrate specificity of Uca pugilator collagenolytic serine protease 1 correlates with the bovine type I collagen cleavage sites. J Biol Chem 269:19565–19572

    CAS  PubMed  Google Scholar 

  • Van Wormhoudt A, Le Chevalier P, Sellos D (1992) Purification, biochemical characterization and N-terminal sequence of a serine-protease with chymotrypsic and collagenolytic activities in a tropical shrimp, Penaeus vannamei (Crustacea, Decapoda). Comp Biochem Physiol B 103:675–680

    PubMed  Google Scholar 

  • Yang F, Su W-J, Lu B-J, Wu T, Sun L-C, Hara K, Cao M-J (2009) Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem 116:860–866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Patricia Hernandez-Cortes for technical assistance and Ira Fogel for comprehensive editing services (CIBNOR). This study was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT grant 80935 to F.G.C.). B.B.V. is a recipient of a graduate fellowship (CONACYT 277859). We thank Dr. Reinhard Saborowski at AWI, Germany, for supporting this research.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando García-Carreño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibo-Verdugo, B., Rojo-Arreola, L., Navarrete-del-Toro, M.A. et al. A chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus interruptus: Purification and Biochemical Characterization. Mar Biotechnol 17, 416–427 (2015). https://doi.org/10.1007/s10126-015-9626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9626-z

Keywords

Navigation