Skip to main content
Log in

GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

This article introduces a software package named GeoSurveillance that combines spatial statistical techniques and GIS routines to perform tests for the detection and monitoring of spatial clustering. GeoSurveillance provides both retrospective and prospective tests. While retrospective tests are applied to spatial data collected for a particular point in time, prospective tests attempt to incorporate the dynamic nature of spatial patterns via analyzing time-series data to detect emergent clusters as quickly as possible. This article will outline the structure of GeoSurveillance as well as describe the statistical cluster detection methods implemented in the software. It concludes with an illustration of the use of the software to analyze the spatial pattern of low birth weights in Los Angeles County, California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  • Besag J, Newell J (1991) The detection of clusters in rare diseases. J R Stat Soc A Ser A 154(1):143–155. doi:10.2307/2982708

    Article  Google Scholar 

  • Castro MC, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38:180–208. doi:10.1111/j.0016-7363.2006.00682.x

    Article  Google Scholar 

  • CDC (1990) Low birthweight—United States, 1975–1987. Morb Mortal Wkly Rep 39(9):148–151

    Google Scholar 

  • CDC (2002) Infant mortality and low birth weight among black and white infants—United States, 1980–2000. Morb Mortal Wkly Rep 51(27):589–592

    Google Scholar 

  • Chasnoff IJ, Burns WJ, Schnoll SH, Burns KA (1985) Cocaine use in pregnancy. N Engl J Med 313:665–669

    Google Scholar 

  • Crosier RB (1988) Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 30(3):291–303. doi:10.2307/1270083

    Article  Google Scholar 

  • Eisner V, Brazie JV, Pratt MW, Hexter AC (1979) The risk of low birthweight. Am J Public Health 69(9):887–893. doi:10.2105/AJPH.69.9.887

    Article  Google Scholar 

  • English PB, Kharrazi M, Davies S, Scalf R, Waller L, Neutra R (2003) Changes in the spatial pattern of low birth weight in a Southern California county: the role of individual and neighborhood level factors. Soc Sci Med 56:2073–2089. doi:10.1016/S0277-9536(02)00202-2

    Article  Google Scholar 

  • Fotheringham AS, Zhan FB (1996) A comparison of three exploratory methods for cluster detection in spatial point pattern. Geogr Anal 28(3):200–218

    Google Scholar 

  • Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat 21:607–611. doi:10.1214/aoms/1177729756

    Article  Google Scholar 

  • Fuchs C, Kenett R (1980) A test for detecting outlying cells in the multinomial distribution and two-way contingency tables. J Am Stat Assoc 75(370):395–398. doi:10.2307/2287465

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Google Scholar 

  • Hawkins DM, Olwell DH (1998) Cumulative sum charts and charting for quality improvement. Springer, New York

    Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803. doi:10.1093/biomet/75.4.800

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hutwagner LC, Maloney EK, Bean NH, Slutsker L, Martin SM (1997) Using laboratory-based surveillance data for prevention: an algorithm for detecting salmonella outbreaks. Emerg Infect Dis 3(3):395–400

    Article  Google Scholar 

  • Kleinman K, Lazarus R, Platt R (2004) A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism. Am J Epidemiol 159:217–224. doi:10.1093/aje/kwh029

    Article  Google Scholar 

  • Knox G (1964) The detection of space-time interactions. Appl Stat 13:25–29. doi:10.2307/2985220

    Article  Google Scholar 

  • Kulldorff M (2001) Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc Ser A 164(1):61–72

    Article  Google Scholar 

  • Kulldorff M (2006) SaTScan User Guide for Version 7.0: www.satscan.org

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14:799–810. doi:10.1002/sim.4780140809

    Article  Google Scholar 

  • Lawson A (2001) Statistical methods in spatial epidemiology. Wiley, New York

    Google Scholar 

  • Lowry CA, Montgomery DC (1995) A review of multivariate control charts. IIE Trans 27(6):800–810. doi:10.1080/07408179508936797

    Article  Google Scholar 

  • Lucas JM (1985) Counted data CUSUM’s. Technometrics 27(2):129–144. doi:10.2307/1268761

    Article  Google Scholar 

  • McLafferty S, Tempalski B (1995) Restructuring and women’s reproductive health: implications for low birthweight in New York city. Geoforum 26(3):309–323. doi:10.1016/0016-7185(95)00040-2

    Article  Google Scholar 

  • Montgomery D (1996) Introduction to statistical quality control. Wiley, New York

    Google Scholar 

  • Moran PAP (1948) The interpretation of statistical maps. J Roy Stat Soc Ser B Methodol 10(2):243–251

    Google Scholar 

  • O’Campo P, Xue X, Wang M-C, Caughy MO (1997) Neighborhood risk factors for low birthweight in Baltimore: a multilevel analysis. Am J Public Health 87(7):1113–1118. doi:10.2105/AJPH.87.7.1113

    Article  Google Scholar 

  • Okabe A, Okunuki K, Funamoto S (2006) SANET: a toolbox for spatial analysis on a network. Geogr Anal 38(1):57–66. doi:10.1111/j.0016-7363.2005.00674.x

    Article  Google Scholar 

  • Openshaw S, Charlton M, Wymer C, Craft A (1987) A Mark 1 Geographical Analysis Machine for the automated analysis of point data set. Int J GIS 1:335–358

    Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distribution issues and an application. Geogr Anal 27(4):286–306

    Google Scholar 

  • Pignatiello JJJ, Runger GC (1990) Comparisons of multivariate CUSUM charts. J Qual Technol 22(3):173–186

    Google Scholar 

  • Radaelli G (1998) Planning time-between-events Shewhart control charts. Total Qual Manage 9(1):133–140. doi:10.1080/0954412989324

    Article  Google Scholar 

  • Raubertas RF (1989) An analysis of disease surveillance data that uses geographic locations of the reporting units. Stat Med 8:267–271. doi:10.1002/sim.4780080306

    Article  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary point process. J Appl Probab 13:255–266. doi:10.2307/3212829

    Article  Google Scholar 

  • Roberts E (1997) Neighborhood social environments and the distribution of low birthweight in Chicago. Am J Public Health 87(4):597–603. doi:10.2105/AJPH.87.4.597

    Article  Google Scholar 

  • Rogerson PA (1997) Surveillance systems for monitoring the development of spatial patterns. Stat Med 16:2081–2093. doi:10.1002/(SICI)1097-0258(19970930)16:18<2081::AID-SIM638>3.0.CO;2-W

    Article  Google Scholar 

  • Rogerson PA (1999) The detection of clusters using a spatial version of the chi-square goodness-of-fit test. Geogr Anal 31(2):130–147

    Google Scholar 

  • Rogerson PA (2001a) Monitoring point patterns for the development of space-time clusters. J R Stat Soc Ser A 164(1):87–96

    Article  Google Scholar 

  • Rogerson PA (2001b) A statistical method for the detection of geographic clustering. Geogr Anal 33(3):215–227

    Google Scholar 

  • Rogerson PA (2005a) A set of associated statistical tests for the detection of spatial clustering. Ecol Environ Stat 12(3):275–288

    Article  Google Scholar 

  • Rogerson PA (2005b) Spatial surveillance and cumulative sum methods. In: Lawson AB, Kleinman K (eds) Spatial and syndromic surveillance for public health. Wiley, Chichester

    Google Scholar 

  • Rogerson PA (2006) Formulas for the design of CUSUM quality control charts. Commun Stat Theory Methods 35:373–383. doi:10.1080/03610920500440032

    Article  Google Scholar 

  • Rogerson PA, Yamada I (2004a) Approaches to syndromic surveillance when data consist of small regional counts. Morb Mortal Wkly Rep 53(Suppl):79–85

    Google Scholar 

  • Rogerson PA, Yamada I (2004b) Monitoring change in spatial patterns of disease: comparing univariate and multivariate cumulative sum approaches. Stat Med 23(14):2195–2214. doi:10.1002/sim.1806

    Article  Google Scholar 

  • Rossi G, Lampugnani L, Marchi M (1999) An approximate cusum procedure for surveillance of health events. Stat Med 18:2111–2122. doi:10.1002/(SICI)1097-0258(19990830)18:16<2111::AID-SIM171>3.0.CO;2-Q

    Article  Google Scholar 

  • Schoendorf KC, Hogue CJR, Kleinman JC, Rowley D (1992) Mortality among infants of black as compared with white college-educated parents. N Engl J Med 326(23):1522–1526

    Google Scholar 

  • Siegmund D (1985) Sequential analysis: test and confidence intervals. Springer, New York

    Google Scholar 

  • Tango T (1995) A class of tests for detecting ‘general’ and ‘focused’ clustering of rare diseases. Stat Med 14:2323–2334. doi:10.1002/sim.4780142105

    Article  Google Scholar 

  • Thomas RW (1977) Introduction to quadrat analysis. Geo Abstracts, Norwich

    Google Scholar 

  • Turnbull BW, Iwano EJ, Burnett WS, Howe HJ, Clark LC (1990) Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132(1):136–143

    Google Scholar 

  • Waller L, Gotway C (2004) Applied spatial statistics for public health data. Wiley, New York

    Book  Google Scholar 

  • Weatherall JAC, Haskey JC (1976) Surveillance of malformations. Br Med Bull 32(1):39–44

    Google Scholar 

  • Zuckerman B, Frank DA, Hingson R, Amaro H, Levenson SM, Kayne H, Parker S, Vinci R, Aboagye K, Fried LE et al (1989) Effects of maternal marijuana and cocaine use on fetal growth. N Engl J Med 320:767–768

    Article  Google Scholar 

Download references

Acknowledgments

This project was partly supported by Grant-in-aid of Southwestern Consortium for Environmental Research and Policy. The authors wish to thank the Center for Health Statistics, California Department of Health Services, for providing data for the case study. We also gratefully acknowledge the support received from National Cancer Institute Grant R01 CA92693-01, Grant 1R01 ES09816–01 from the National Institutes of Health, Grant No.98-IJ-CX-K008 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice, and National Science Foundation Award No. BCS-9905900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuho Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, I., Rogerson, P.A. & Lee, G. GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters. J Geogr Syst 11, 155–173 (2009). https://doi.org/10.1007/s10109-009-0080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-009-0080-1

Keywords

JEL Classification

Navigation