Skip to main content

Advertisement

Log in

Analysis of alternative non-catalytic processes for the production of biodiesel fuel

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

One of the most common supercritical processes for the production of biodiesel fuel involves the use of methanol as reactant. Besides obtaining biodiesel fuel, glycerol is also produced. To avoid the production of glycerol as by-product, alternative reactants for the production of the biofuel have been proposed in recent years. As expected, the use of different reactants may have an impact on the separation processes required to obtain biodiesel fuel complying with international standards. Thus, in this work flowsheets for the different supercritical processes for the production of biodiesel are proposed and analyzed in a simulation environment. The analyzed processes are then compared in terms of energy requirements, total annual costs, and environmental impact. It has been found that the two-step processes show advantages in terms of CO2 emissions, but in terms of total annual cost the one-step processes are better, showing potential for low CO2 emissions. Nevertheless, the processes in one-step (with methanol or methyl acetate) result in lower CO2 emissions and TAC if they are operated at lower temperature. Acetic acid process is the more energy-intensive and expensive of the four processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

r i (mol of component i/s):

Reaction rate for component i

k j (1/s):

kinetic constant for reaction j

C i (mol/L):

Molar concentration of component i

HE:

Heating efficiency

Q prod (kJ/h):

Heat produced by the fuel

Q req (kJ/h):

Heat required to produce the fuel

TAC (USD/year):

Total annual cost

CC (USD):

Capital cost

OC (USD/year):

Operation cost

n (years):

Payback period

A :

Pre-exponential factor

E a (kJ/kmol):

Activation energy

Q T (MJ/h):

Total thermal energy requirements

References

  • Abbasi S, Diwekar UM (2014) Characterization and stochastic modeling of uncertainties in the biodiesel production. Clean Technol Environ Policy 16:79–94

    Article  Google Scholar 

  • Anitescu G, Deshpande A, Tavlarides LL (2008) Integrated technology for supercritical biodiesel production and power cogeneration. Energy Fuels 22:1391–1399

    Article  CAS  Google Scholar 

  • Bernal JM, Lozano P, García-Verdugo E, Burguete MI, Sánchez-Gómez G, López-López G, Pucheault M, Vaultier M, Luis SV (2012) Supercritical synthesis of biodiesel. Molecules 17:8696–8719

    Article  CAS  Google Scholar 

  • Brondani M, Hoffmann R, Mayer FD, Kleinert JS (2015) Environmental and energy analysis of biodiesel production in Rio Grande do Sul, Brazil. Clean Technol Environ Policy 17:129–143

    Article  CAS  Google Scholar 

  • Caetano NS, Silva VFM, Melo AC, Martins AA, Mata TM (2014) Spent coffee grounds for biodiesel production and other applications. Clean Technol Environ Policy 16:1423–1430

    Article  CAS  Google Scholar 

  • Campanelli P, Banchero M, Manna L (2010) Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel 89:3675–3682

    Article  CAS  Google Scholar 

  • Chakraborty R, Das S, Bhattacharjee SK (2014) Optimization of biodiesel production from Indian mustard oil by biological tri-calcium phosphate catalyst derived from turkey bone ash. Clean Technol Environ Policy. doi:10.1007/s10098-014-0802-z

    Google Scholar 

  • Chen DHT, Thompson AR (1970) Isobaric vapor-liquid equilibria for the systems glycerol-water and glycerol-water saturated with sodium chloride. J Chem Eng Data 15:471–474

    Article  CAS  Google Scholar 

  • De Lima da Silva N, Garcia Santander CM, Batistella CB, Maciel Filho R, Wolf Maciel MR (2010) Biodiesel production from integration between reaction and separation system: reactive distillation process. Appl Biochem Biotechnol 161:245–254

    Article  CAS  Google Scholar 

  • Delavari A, Halek F, Amini M (2015) Continuous biodiesel production in a helicoidal reactor using ultrasound-assisted transesterification reaction of waste cooking oil. Clean Technol Environ Policy 17:273–279

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  • Demirbas A (2008) Biodiesel: a realistic fuel alternative for diesel engines. Springer, London

    Google Scholar 

  • Demirbas A (2009) Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenerg 33:113–118

    Article  CAS  Google Scholar 

  • Gadalla MA, Olujic Z, Jansens PJ, Jobson M, Smith R (2005) Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environ Sci Technol 39:6860–6870

    Article  CAS  Google Scholar 

  • Glisic S, Skala D (2009) The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. J Supercrit Fluids 49:293–301

    Article  CAS  Google Scholar 

  • Glisic S, Montoya O, Orlovic A, Skala D (2007) Vapor-liquid equilibria of triglycerides-methanol mixtures and their influence on the biodiesel synthesis under supercritical conditions of methanol. J Serb Chem Soc 72:13–27

    Article  CAS  Google Scholar 

  • Glisic S, Lukic I, Skala D (2009) Biodiesel synthesis at high pressure and temperature: analysis of energy consumption on industrial scale. Bioresour Technol 100:6347–6354

    Article  CAS  Google Scholar 

  • Gómez-Castro FI, Rico-Ramírez V, Segovia-Hernández JG, Hernández-Castro S (2011) Esterification of fatty acids in a thermally coupled reactive distillation column by the two-step supercritical methanol method. Chem Eng Res Des 89:480–490

    Article  Google Scholar 

  • Gómez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez-Castro S, El-Halwagi MM (2013) Simulation study on biodiesel production by reactive distillation with methanol at high pressure and temperature: impact on costs and pollutant emissions. Comput Chem Eng 52:204–215

    Article  Google Scholar 

  • Gurusala NK, Selvan VAM (2014) Effects of alumina nanoparticles in waste chicken fat biodiesel on the operating characteristics of a compression ignition engine. Clean Technol Environ Policy. doi:10.1007/s10098-014-0825-5

    Google Scholar 

  • Halek F, Delavari A, Kavousi-rahim A (2013) Production of b as a renewable energy source from castor oil. Clean Technol Environ Policy 15:1063–1068

    Article  CAS  Google Scholar 

  • Hawash S, Kamal N, Zaher F, Kenawi O, El-Diwani G (2009) Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 88:579–582

    Article  CAS  Google Scholar 

  • He H, Wang T, Zhu S (2007) Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86:442–447

    Article  CAS  Google Scholar 

  • Igliński B, Piechota G, Buczkowski R (2014) Development of biomass in polish energy sector: an overview. Clean Technol Environ Policy. doi:10.1007/s10098-014-0820-x

    Google Scholar 

  • Imahara H, Minami E, Hari S, Saka S (2008) Thermal stability of biodiesel in supercritical methanol. Fuel 87:1–6

    Article  CAS  Google Scholar 

  • Johnson DT, Taconi KT (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • King JW, Taylor SL, Snyder JM, Holliday RL (1998) Total fatty acid analysis of vegetable oil soapstocks by supercritical fluid extraction/reaction. J Am Oil Chem Soc 75:1291–1295

    Article  CAS  Google Scholar 

  • Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34:812–820

    Article  CAS  Google Scholar 

  • Kiss AA (2011) Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process Technol 92:1288–1296

    Article  CAS  Google Scholar 

  • Kiss AA, Bildea CS (2012) A review of biodiesel production by integrated reactive separation technologies. J Chem Technol Biotechnol 87:861–879

    Article  CAS  Google Scholar 

  • Kiss AA, Omota F, Dimian AC, Rothenberg G (2006) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150

    Article  CAS  Google Scholar 

  • Kiss AA, Segovia-Hernández JG, Bildea CS, Miranda-Galindo EY, Hernández S (2012) Reactive DWC leading the way to FAME and fortune. Fuel 95:352–359

    Article  CAS  Google Scholar 

  • Kiwjaroun C, Tubtimdee C, Piumsomboon P (2009) LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. J Clean Prod 17:143–153

    Article  CAS  Google Scholar 

  • Kusdiana D, Saka S (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80:693–698

    Article  CAS  Google Scholar 

  • Lee S, Posarac D, Ellis N (2011) Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem Eng Res Des 89:2626–2642

    Article  CAS  Google Scholar 

  • Liew WH, Hassim MH, Ng DKS (2014) Sustainability assessment for biodiesel production via fuzzy optimisation during research and development (R&D) stage. Clean Technol Environ Policy 16:1431–1444

    Article  CAS  Google Scholar 

  • Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    Article  CAS  Google Scholar 

  • Luyben WL, Chien I-L (2010) Design and control of distillation systems for separating azeotropes. Wiley, New Jersey

    Book  Google Scholar 

  • Luyben ML, Luyben WL (1995) Design and control of a complex process involving two reaction steps, three distillation columns, and two recycle streams. Ind Eng Chem Res 34:3885–3898

    Article  CAS  Google Scholar 

  • Marchetti JM, Errazu AF (2008) Technoeconomic study of supercritical biodiesel production plant. Energ Convers Manag 49:2160–2164

    Article  CAS  Google Scholar 

  • Minami E, Saka S (2006) Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85:2479–2483

    Article  CAS  Google Scholar 

  • Miranda-Galindo EY, Segovia-Hernández JG, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A (2011) Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res 50:926–938

    Article  CAS  Google Scholar 

  • Negi DS, Sobotka F, Kimmel T, Wozny G, Schomäcker R (2006) Liquid-liquid phase equilibrium in glycerol-methanol-methyl oleate and glycerol-monoolein-methyl oleate ternary systems. Ind Eng Chem Res 45:3693–3696

    Article  CAS  Google Scholar 

  • Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process 49:323–330

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  • Saka S (2005) Biodiesel fuel production by supercritical methanol technology. J Jpn Inst Energy 84:413–419

    CAS  Google Scholar 

  • Saka S (2011) Biodiesel production technology with waste oils and unused oils (Supercritical fluid to overcome multiphase flow production problems). Jpn J Multiph Flow 25:125–134

    Article  Google Scholar 

  • Saka S, Isayama Y (2009) A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel 88:1307–1313

    Article  CAS  Google Scholar 

  • Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231

    Article  CAS  Google Scholar 

  • Saka S, Isayama Y, Ilham Z, Jiayu X (2010) New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel 89:1442–1446

    Article  CAS  Google Scholar 

  • Samniang A, Tipachan C, Kajorncheappun-ngam S (2014) Comparison of biodiesel production from crude Jatropha oil and Krating oil by supercritical methanol transesterification. Renew Energ 68:351–355

    Article  CAS  Google Scholar 

  • Sawangkeaw R, Bunyakiat K, Ngamprasertsith S (2010) A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). J Supercrit Fluids 55:1–13

    Article  CAS  Google Scholar 

  • Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161

    Article  CAS  Google Scholar 

  • Sing D, Ganesh A, Mahajani S (2014) Heterogeneous catalysis for biodiesel synthesis and valorization of glycerol. Clean Technol Environ Policy. doi:10.1007/s10098-014-0858-9

    Google Scholar 

  • Tan KT, Lee KT (2011) A review on supercritical fluids (SCF) technology in sustainable biodiesel production: potential and challenges. Renew Sust Energ Rev 15:2452–2456

    Article  CAS  Google Scholar 

  • Tan MC, Chin MWS, Lim KM, Mun YS, Ng RTL, Tay DHS, Ng DKS (2013) Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol Environ Policy 15:783–799

    Article  Google Scholar 

  • Turton R, Bailey RC, Whiting WB, Schaeiwitz JA (2009) Analysis, synthesis, and design of chemical processes, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Turton R, Bailey RC, Whiting WB, Schaeiwitz JA, Bhattacharyya D (2012) Analysis, synthesis, and design of chemical processes, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  • West AH, Posarac D, Ellis N (2008) Assessment of four biodiesel production processes using HYSYS.Plant. Bioresour Technol 99:6587–6601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by Consejo Nacional de Ciencia y Tecnología (CONACyT), Programa para el Desarrollo Profesional Docente (PRODEP), and Universidad de Guanajuato (México).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Israel Gómez-Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Castro, F.I., Segovia-Hernández, J.G., Hernández, S. et al. Analysis of alternative non-catalytic processes for the production of biodiesel fuel. Clean Techn Environ Policy 17, 2041–2054 (2015). https://doi.org/10.1007/s10098-015-0933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0933-x

Keywords

Navigation