Skip to main content

Advertisement

Log in

Biodiesel Production from Integration Between Reaction and Separation System: Reactive Distillation Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called “Intensified Process”. This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Narasimharao, K., Lee, A., & Wilson, K. (2007). Journal of Biobased Materials and Bioenergy, 1, 19–30.

    Google Scholar 

  2. Fangrui, Ma., & Milford, A. H. (1999). Bioresource Technology, 70, 1–15.

    Article  Google Scholar 

  3. Marchetti, J. M., Miguel, V. U., & Errazu, A. F. (2007). Renewable and Sustainable Energy Reviews, 11, 1300–1311.

    Article  CAS  Google Scholar 

  4. Stankiewicz, A. I., & Moulijn, J. A. (2000). Chemical Engineering Progress, 96, 22–34.

    CAS  Google Scholar 

  5. Perry, R. H., Green, D. W., & Maloney, J. O. (1997). Perry's chemical engineers handbook, section 13: distillation (7th ed., p. 81). NY: McGraw-Hill.

    Google Scholar 

  6. Luyben, W. L., & Yu, C. C. (2008). In Reactive distillation design and control, preface. Wiley, Hoboken: NJ, pp. 19.

  7. Tuchlenski, A., Beckmann, A., Reusch, D., Düssel, R., Weidlich, U., & Janowsky, R. (2001). Chemical Engineering Science, 56, 387–394.

    Article  CAS  Google Scholar 

  8. Jan Harmsen, G. (2007). Chemical Engineering Progress, 46, 774–780.

    Article  Google Scholar 

  9. Taylor, R., & Krishna, R. (2000). Chemical Engineering Science, 55, 5183–5229.

    Article  CAS  Google Scholar 

  10. Wang, J., Ge, X., Wang, Z., & Jin, Y. (2001). Chemical Engineering and Technology, 24(2), 155–159.

    Article  CAS  Google Scholar 

  11. Calvar, N., González, B., & Dominguez, A. (2007). Chemical Engineering Progress, 46, 1317–1323.

    CAS  Google Scholar 

  12. Bhatia, S., Mohamed, A. R., Ahmad, A. L., & Chin, S. Y. (2007). Computers and Chemical Engineering, 31, 1187–1198.

    Article  CAS  Google Scholar 

  13. Lai, I., Liu, Y., Yu, C. C., Lee, M., & Huang, H. P. (2008). Chemical Engineering Progress, 47, 1831–1843.

    CAS  Google Scholar 

  14. Steinigeweg, S., & Gmehling, J. (2003). Industrial and Engineering Chemistry Research, 42, 3612–3619.

    Article  CAS  Google Scholar 

  15. He, B. B., Singh, A. P., & Thompson, J. C. (2006). T ASABE, 49(1), 107–112.

    CAS  Google Scholar 

  16. Kiss, A. A., Dimian, A. C., Rothenberg, G. (2008). In B. Braunschweig, X. Joulia (Eds.), 18th European symposium on computer aided process engineering—ESCAPE 18. Lyon, Fr. pp. 775–780.

  17. Kiss, A. A., Omota, F., Dimian, A. C., & Rothenberg, G. (2006). Topics in Catalysis, 40, 141–150.

    Article  CAS  Google Scholar 

  18. Tung, S., & Yu, C. (2007). AIChE J, 1278–1297

  19. Hartman, L., & Lago, R. C. A. (1973). Laboratory Practice, 22, 475–476.

    CAS  Google Scholar 

  20. Schoenfelder, W. (2003). European Journal of Lipid Science and Technology, 105, 45–48.

    Article  CAS  Google Scholar 

  21. Box, G. E., & Hunter, J. S. (1978). In: Statistic for experimenters—an introduction to design, data analysis, and model building. Wiley, New York.

  22. Vicente, G., Martinez, M., Aracil, J., & Esteban, A. (2005). Industrial and Engineering Chemistry Research, 44, 5447–5454.

    Article  CAS  Google Scholar 

  23. Freedman, B., Royden, O. B., & Pryde, E. H. (1986). JAOCS, 63(10), 1375–1380.

    Article  CAS  Google Scholar 

  24. De Lima Da Silva, N., Batistella, C. B., Wolf Maciel, M. R., & Maciel Filho, R. (2009). Energy e Fuel, 23, 5636–5642.

    Article  Google Scholar 

  25. Goodrum, J. W. (2002). Biomass Bioenergy, 22, 205–211.

    Article  CAS  Google Scholar 

  26. Van Gerpan, J. (2005). Fuel Processing Technology, 86(10), 1097–1107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nívea de Lima da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima da Silva, N., Santander, C.M.G., Batistella, C.B. et al. Biodiesel Production from Integration Between Reaction and Separation System: Reactive Distillation Process. Appl Biochem Biotechnol 161, 245–254 (2010). https://doi.org/10.1007/s12010-009-8882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8882-7

Keywords

Navigation