Skip to main content
Log in

A nutrigenomic framework to identify time-resolving responses of hepatic genes in diet-induced obese mice

  • Published:
Molecules and Cells

Abstract

Obesity and its related complications have emerged as global health problems; however, the pathophysiological mechanism of obesity is still not fully understood. In this study, C57BL/6J mice were fed a normal (ND) or high-fat diet (HFD) for 0, 2, 4, 6, 8, 12, 20, and 24 weeks and the time course was systemically analyzed specifically for the hepatic transcriptome profile. Genes that were differentially expressed in the HFD-fed mice were clustered into 49 clusters and further classified into 8 different expression patterns: long-term up-regulated (pattern 1), long-term downregulated (pattern 2), early up-regulated (pattern 3), early down-regulated (pattern 4), late up-regulated (pattern 5), late down-regulated (pattern 6), early up-regulated and late down-regulated (pattern 7), and early down-regulated and late up-regulated (pattern 8) HFD-responsive genes. Within each pattern, genes related with inflammation, insulin resistance, and lipid metabolism were extracted, and then, a protein-protein interaction network was generated. The pattern specific sub-network was as follows: pattern 1, cellular assembly and organization, and immunological disease, pattern 2, lipid metabolism, pattern 3, gene expression and inflammatory response, pattern 4, cell signaling, pattern 5, lipid metabolism, molecular transport, and small molecule biochemistry, pattern 6, protein synthesis and cell-to cell signaling and interaction and pattern 7, cell-to cell signaling, cellular growth and proliferation, and cell death. For pattern 8, no significant sub-networks were iden-tified. Taken together, this suggests that genes involved in regulating gene expression and inflammatory response are up-regulated whereas genes involved in lipid metabolism and protein synthesis are down-regulated during dietinduced obesity development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader, G.D., Betel, D., and Hogue, C.W. (2003). BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248–250.

    Article  PubMed  CAS  Google Scholar 

  • Bleich, S., Cutler, D., Murray, C., and Adams, A. (2008). Why is the developed world obese? Annu. Rev. Public Health 29, 273–295.

    Article  PubMed  Google Scholar 

  • Blouet, C., and Schwartz, G.J. (2011). Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice. J. Neurosci. 31, 6019–6027.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Hui, S.T., Couto, F.M., Mungrue, I.N., Davis, D.B., Attie, A.D., Lusis, A.J., Davis, R.A., and Shalev, A. (2008). Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 22, 3581–3594.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Deng, Y., Zhang, J., Yang, L., Xie, X., and Xu, T. (2009). GDI-1 preferably interacts with Rab10 in insulin-stimulated GLUT4 translocation. Biochem. J. 422, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Chinni, S.R., Brenz, M., and Shisheva, A. (1998). Modulation of GDP-dissociation inhibitor protein membrane retention by the cellular redox state in adipocytes. Exp. Cell Res. 242, 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Chutkow, W.A., Birkenfeld, A.L., Brown, J.D., Lee, H.Y., Frederick, D.W., Yoshioka, J., Patwari, P., Kursawe, R., Cushman, S.W., Plutzky, J., et al. (2010). Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. Diabetes 59, 1424–1434.

    Article  PubMed  CAS  Google Scholar 

  • Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., et al. (2011). Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–697.

    Article  PubMed  CAS  Google Scholar 

  • Do, G.M., Oh, H.Y., Kwon, E.Y., Cho, Y.Y., Shin, S.K., Park, H.J., Jeon, S.M., Kim, E., Hur, C.G., Park, T.S., et al. (2011). Longterm adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice. Mol. Nutr. Food Res. 55Suppl 2, S173–185.

    Article  PubMed  CAS  Google Scholar 

  • Fain, J.N. (2006). Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitamins Horm. 74, 443–477.

    Article  CAS  Google Scholar 

  • Fried, S.K., Bunkin, D.A., and Greenberg, A.S. (1998). Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Gaffney, D., Forster, L., Caslake, M.J., Bedford, D., Stewart, J.P., Stewart, G., Wieringa, G., Dominiczak, M., Miller, J.P., and Packard, C.J. (2002). Comparison of apolipoprotein B metabolism in familial defective apolipoprotein B and heterogeneous familial hypercholesterolemia. Atherosclerosis 162, 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Gao, J., Ade, A.S., Tarcea, V.G., Weymouth, T.E., Mirel, B.R., Jaga-dish, H.V., and States, D.J. (2009). Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25, 137–138.

    Article  PubMed  CAS  Google Scholar 

  • Haslam, D.W., and James, W.P. (2005). Obesity. Lancet 366, 1197–1209.

    Article  PubMed  Google Scholar 

  • Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13.

    Article  CAS  Google Scholar 

  • Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

    Article  CAS  Google Scholar 

  • Ji, H., and Friedman, M.I. (2007). Reduced capacity for fatty acid oxidation in rats with inherited susceptibility to diet-induced obesity. Metabolism 56, 1124–1130.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–114.

    Article  PubMed  CAS  Google Scholar 

  • Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., et al. (2012). The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–846.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.A., Yeh, D.C., Ver, M., Li, Y., Carranza, A., Conrads, T.P., Veenstra, T.D., Harrington, M.A., and Quon, M.J. (2005). Phosphorylation of Ser24 in the pleckstrin homology domain of insulin receptor substrate-1 by Mouse Pelle-like kinase/interleukin-1 receptor-associated kinase: cross-talk between inflammatory signaling and insulin signaling that may contribute to insulin resistance. J. Biol. Chem. 280, 23173–23183.

    Article  PubMed  CAS  Google Scholar 

  • Kleemann, R., van Erk, M., Verschuren, L., van den Hoek, A.M., Koek, M., Wielinga, P.Y., Jie, A., Pellis, L., Bobeldijk-Pastorova, I., Kelder, T., et al. (2010). Time-resolved and tissue-specific sys-tems analysis of the pathogenesis of insulin resistance. PLoS One 5, e8817.

    Article  PubMed  CAS  Google Scholar 

  • Kleinridders, A., Schenten, D., Konner, A.C., Belgardt, B.F., Mauer, J., Okamura, T., Wunderlich, F.T., Medzhitov, R., and Bruning, J.C. (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Koenen, T.B., Stienstra, R., van Tits, L.J., de Graaf, J., Stalenhoef, A.F., Joosten, L.A., Tack, C.J., and Netea, M.G. (2011). Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Koo, S.H., Satoh, H., Herzig, S., Lee, C.H., Hedrick, S., Kulkarni, R., Evans, R.M., Olefsky, J., and Montminy, M. (2004). PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Leone, T.C., Lehman, J.J., Finck, B.N., Schaeffer, P.J., Wende, A.R., Boudina, S., Courtois, M., Wozniak, D.F., Sambandam, N., Bernal-Mizrachi, C., et al. (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101.

    Article  PubMed  CAS  Google Scholar 

  • Liang, H., and Ward, W.F. (2006). PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151.

    Article  PubMed  Google Scholar 

  • Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A.P., Santonico, E., et al. (2012). MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–861.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S., Thomas, T.C., Storlien, L.H., and Huang, X.F. (2000). Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int. J. Obes. Relat. Metab. Disord. 24, 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Schonfeld, G., Yue, P., and Chen, Z. (2002). Hepatic fatty acid synthesis is suppressed in mice with fatty livers due to targeted apolipoprotein B38.9 mutation. Arterioscler. Thromb. Vasc. Biol. 22, 476–482.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., Wu, P.H., Tarr, P.T., Lindenberg, K.S., St-Pierre, J., Zhang, C.Y., Mootha, V.K., Jager, S., Vianna, C.R., Reznick, R.M., et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119, 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., and Lin, J.D. (2011). PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. 43, 248–257.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa-Nagata, N., Takamura, T., Ando, H., Nakamura, S., Kurita, S., Misu, H., Ota, T., Yokoyama, M., Honda, M., Miyamoto, K., et al. (2008). Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57, 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  • Miura, S., Kai, Y., Ono, M., and Ezaki, O. (2003). Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles. J. Biol. Chem. 278, 31385–31390.

    Article  PubMed  CAS  Google Scholar 

  • Petro, A.E., Cotter, J., Cooper, D.A., Peters, J.C., Surwit, S.J., and Surwit, R.S. (2004). Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse. Metabolism 53, 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M., and Spiegelman, B.M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush, J. (2001). Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427.

    Article  PubMed  CAS  Google Scholar 

  • Radonjic, M., de Haan, J.R., van Erk, M.J., van Dijk, K.W., van den Berg, S.A., de Groot, P.J., Muller, M., and van Ommen, B. (2009). Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program. PLoS One 4, e6646.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, V.Z., and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6, 399–409.

    Article  PubMed  CAS  Google Scholar 

  • Rossmeisl, M., Rim, J.S., Koza, R.A., and Kozak, L.P. (2003). Variation in type 2 diabetes—related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52, 1958–1966.

    Article  PubMed  CAS  Google Scholar 

  • Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., and Eisenberg, D. (2004). The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–451.

    Article  PubMed  Google Scholar 

  • Schenk, S., Saberi, M., and Olefsky, J.M. (2008). Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002.

    Article  PubMed  CAS  Google Scholar 

  • Sell, H., Dietze-Schroeder, D., and Eckel, J. (2006). The adipocytemyocyte axis in insulin resistance. Trends Endocrinol. Metab. 17, 416–422.

    Article  PubMed  CAS  Google Scholar 

  • Simon, T., Cook, V.R., Rao, A., and Weinberg, R.B. (2011). Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J. Lipid. Res. 52, 1984–1994.

    Article  PubMed  CAS  Google Scholar 

  • Simoncic, M., Rezen, T., Juvan, P., Rozman, D., Fazarinc, G., Fievet, C., Staels, B., and Horvat, S. (2011). Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle. BMC Genomics 12, 96.

    Article  PubMed  CAS  Google Scholar 

  • Singh, N., and Li, L. (2012). Reduced oxidative tissue damage during endotoxemia in IRAK-1 deficient mice. Mol. Immunol. 50, 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Stark, C., Breitkreutz, B.J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R., Livstone, M.S., Nixon, J., Van Auken, K., Wang, X., Shi, X., et al. (2011). The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–704.

    Article  PubMed  CAS  Google Scholar 

  • Surwit, R.S., Feinglos, M.N., Rodin, J., Sutherland, A., Petro, A.E., Opara, E.C., Kuhn, C.M., and Rebuffe-Scrive, M. (1995). Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Surwit, R.S., Wang, S., Petro, A.E., Sanchis, D., Raimbault, S., Ricquier, D., and Collins, S. (1998). Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc. Natl. Acad. Sci. USA 95, 4061–4065.

    Article  PubMed  CAS  Google Scholar 

  • Van Heek, M., Compton, D.S., France, C.F., Tedesco, R.P., Fawzi, A.B., Graziano, M.P., Sybertz, E.J., Strader, C.D., and Davis, H.R., Jr. (1997). Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Invest. 99, 385–390.

    Article  PubMed  Google Scholar 

  • Vaughan, T., and Li, L. (2010). Molecular mechanism underlying the inflammatory complication of leptin in macrophages. Mol. Immunol. 47, 2515–2518.

    Article  PubMed  CAS  Google Scholar 

  • Veerkamp, M.J., de Graaf, J., Bredie, S.J., Hendriks, J.C., Demacker, P.N., and Stalenhoef, A.F. (2002). Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler. Thromb. Vasc. Biol. 22, 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Visser, M.E., Akdim, F., Tribble, D.L., Nederveen, A.J., Kwoh, T.J., Kastelein, J.J., Trip, M.D., and Stroes, E.S. (2010). Effect of apolipoprotein-B synthesis inhibition on liver triglyceride content in patients with familial hypercholesterolemia. J. Lipid Res. 51, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan, G.A., Seto, J., Patil, S., Nudelman, G., and Sealfon, S.C. (2008). Getting started in biological pathway construction and analysis. PLoS Comput. Biol. 4, e16.

    Article  PubMed  CAS  Google Scholar 

  • Werner, T. (2008). Bioinformatics applications for pathway analysis of microarray data. Curr. Opin. Biotechnol. 19, 50–54.

    Article  PubMed  CAS  Google Scholar 

  • Winzell, M.S., and Ahren, B. (2004). The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53Suppl 3, S215–219.

    Article  PubMed  Google Scholar 

  • Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830.

    PubMed  CAS  Google Scholar 

  • Xu, G., Chen, J., Jing, G., and Shalev, A. (2012). Preventing betacell loss and diabetes with calcium channel blockers. Diabetes 61, 848–856.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S., Hosoi, T., and Ozawa, K. (2012). Stearoyl-CoA Desaturase 1 (SCD1) is a key factor mediating diabetes in MyD88-deficient mice. Gene 497, 340–343.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C.R., Granner, D.K., et al. (2001). Control of hepatic gluconeogenesis through the tran-scriptional coactivator PGC-1. Nature 413, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara, E., Fujimoto, S., Inagaki, N., Okawa, K., Masaki, S., Yodoi, J., and Masutani, H. (2010). Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat. Commun. 1, 127.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Liu, Z.X., Choi, C.S., Tian, L., Kibbey, R., Dong, J., Cline, G.W., Wood, P.A., and Shulman, G.I. (2007). Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc. Natl. Acad. Sci. USA 104, 17075–17080.

    Article  PubMed  Google Scholar 

  • Zhang, D., Christianson, J., Liu, Z.X., Tian, L., Choi, C.S., Neschen, S., Dong, J., Wood, P.A., and Shulman, G.I. (2010). Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency. Cell Metab. 11, 402–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheol-Goo Hur or Myung-Sook Choi.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Heo, HS., Kim, E., Jeon, SM. et al. A nutrigenomic framework to identify time-resolving responses of hepatic genes in diet-induced obese mice. Mol Cells 36, 25–38 (2013). https://doi.org/10.1007/s10059-013-2336-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2336-3

Keywords

Navigation