Skip to main content

Advertisement

Log in

A novel hybrid intelligent system for multi-objective machine parameter optimization

  • Original Article
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This multidisciplinary research presents a novel hybrid intelligent system to perform a multi-objective industrial parameter optimization process. The intelligent system is based on the application of evolutionary and neural computation in conjunction with identification systems, which makes it possible to optimize the implementation conditions in the manufacturing process of high precision parts, including finishing precision, while saving time, financial costs and/or energy. Empirical verification of the proposed hybrid intelligent system is performed in a real industrial domain, where a case study is defined and analyzed. The experiments are carried out based on real dental milling processes using a high precision machining centre with five axes, requiring high finishing precision of measures in micrometers with a large number of process factors to analyze. The results of the experiments which validate the performance of the proposed approach are presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Corchado E, Sedano J, Curiel L, Villar JR (2012) Optimizing the operating conditions in a high precision industrial process using soft computing techniques. Expert Systems 29(3):276–299. http://dx.doi.org/10.1111/j.1468-0394.2011.00588.x

  2. Frank M, Hamprecht F (2011) Image-based supervision of a periodically working machine. Pattern Anal Appl 1–10. http://dx.doi.org/10.1007/s10044-011-0245-7

  3. Huang L, Suh IH, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181(11):2370–2391

    Article  Google Scholar 

  4. Das MK, Kishor N (2009) Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water. Expert Syst with Appl 36(2, Part 1):1142–1154

    Article  Google Scholar 

  5. Esen H, Inalli M (2009) Modelling of a vertical ground heat pump system by using artificial neural networks. Expert Syst Appl 36(7):10229–10238

    Article  Google Scholar 

  6. Ljung L (1999) System identification, theory for the user, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  7. Sedano J, Corchado E, Curiel L, Villar J, Bravo PM (2009) The application of a two-step AI model to an automated pneumatic drilling process. Int J Comput Math 86(10):1769–1777

    Article  MATH  Google Scholar 

  8. Sedano J, Curiel L, Corchado E, de la Cal E, Villar JR (2010) A soft computing based method for detecting lifetime building thermal insulation failures. Integr Comput-Aided Eng 17(2):103–115

    Google Scholar 

  9. Vera V, Corchado E, Redondo R, Sedano J, García ÁE (2013) Applying soft computing techniques to optimise a dental milling process. Neurocomputing 109:94–104. http://dx.doi.org/10.1016/j.neucom.2012.04.033

    Google Scholar 

  10. Kalyani S, Swarup K (2012) Design of pattern recognition system for static security assessment and classification. Pattern Anal Appl 15 (3):299–311. http://dx.doi.org/10.1007/s10044-011-0218-x

  11. Miyazaki T, Hotta Y, Kunii J (2009) A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 28(1):44–56

    Article  Google Scholar 

  12. Fuster-Torres MA, Albalat-Estela S, Alcañiz-Raya M, Peñarrocha-Diago M (2009) CAD/CAM dental systems in implant dentistry: Update. Med Oral Patol Oral Cir Bucal 14(3):E141–E145

    Google Scholar 

  13. Beuer F, Schweiger J, Edelhoff D (2008) Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 204(9):497–502

    Article  Google Scholar 

  14. Weaver J, Johnson G, Bales D (1991) Marginal adaptation of castable ceramic crowns. J Prosthet Dent 66:747–753

    Article  Google Scholar 

  15. (2005) Glossary of Prosthodontic Terms. J Prosthet Dent 94: 92

  16. Wolfart S, Martin S, Kern M (2003) Clinical evaluation of marginal fit of a new experimental all—ceramic system before and after cementation. Int J Prosthodont 6:587–592

    Google Scholar 

  17. Francine E, Omar M (2004) Marginal adaptation and microleakage of Procera All Ceram crowns with four cements. Int J Prosthodont 17:529–535

    Google Scholar 

  18. McLean J, von Fraunhofer JA (1971) The estimation of cement film by an in vivo technique. Br Dent J 131:107–111

    Article  Google Scholar 

  19. Karlsson S (1993) The fit of Procera titanium crowns. An in vitro and clinical study. Acta Odontol Scand 51:129–134

    Article  Google Scholar 

  20. Vera V, Sedano J, Corchado E, Redondo R, Hernando B, Camara M, Laham A, Garcia AE (2011) A hybrid system for dental milling parameters optimisation. In: 6th International conference on hybrid artificial intelligence systems. Wroclaw, Poland HAIS 2011, Part II, LNAI 6679, pp 437–446

  21. Corchado E, Graña M, Wozniak M (2012) Editorial: new trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1):61–63

    Article  Google Scholar 

  22. Chang Hsu-Hwa, Chen Yan-Kwang (2011) Neuro-genetic approach to optimize parameter design of dynamic multiresponse experiments. Appl Soft Comput 11(1):436–442

    Article  Google Scholar 

  23. Corchado E, Abraham A, Ponce Leon Ferreira de Carvalho AC (2010) Hybrid intelligent algorithms and applications. Inf Sci 180(14):2633–2634

    Google Scholar 

  24. Abraham A, Corchado E, Corchado JM (2009) Hybrid learning machines. Neurocomputing 72(13–15):2729–2730

    Article  Google Scholar 

  25. Borrajo ML, Baruque B, Corchado E, Bajo J, Corchado JM (2011) Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int J Neural Syst 21(4):277–296

    Article  Google Scholar 

  26. Fujita S (2009) Retrieval parameter optimization using genetic algorithms. Inf Process Manage 45:664–682

    Article  Google Scholar 

  27. Oliveira ALI, Braga PL, Lima RMF, Cornélio ML (2010) Ga-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation. Inf Softw Technol 52:1155–1166

    Article  Google Scholar 

  28. Dorigo M, Stützle T (2004) Ant Colony Optimization. Bradford Co, Scituate

    Book  MATH  Google Scholar 

  29. Liu Y, Zhou C, Guo D, Wang K, Pang W, Zhai Y (2010) A decision support system using soft computing for modern international container transportation services. Appl Soft Comput 10(4):1087–1095

    Article  Google Scholar 

  30. Twycross J, Aickelin U (2010) Information fusion in the immune system. Inf Fusion 11(1):35–44

    Article  Google Scholar 

  31. Corchado E, Herrero A (2011) Neural visualization of network traffic data for intrusion detection. Appl Soft Comput 11(2):2042–2056

    Article  Google Scholar 

  32. Fougères A (2011) Modelling and simulation of complex systems: an approach based on multi-level agents. IJCSI Int J Comput Sci Issues 8(6):8–17

    Google Scholar 

  33. Castro JL, Navarro M, Sánchez JM, Zurita JM (2009) Loss and gain functions for CBR retrieval. Inf Sci 179(11):1738–1750

    Article  Google Scholar 

  34. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2(6):559–572

    Article  Google Scholar 

  35. Hotelling H (1933) Analysis of a complex of statistical variables into Principal Components. J Educ Psychol 24:417–444

    Article  Google Scholar 

  36. Oja E, Ogawa H, Wangviwattana J (1992) Principal components analysis by homogeneous neural networks, part 1, the weighted subspace criterion. IEICE Trans Inf Syst E75D:366–375

    Google Scholar 

  37. Diaconis P, Freedman D (1984) Asymptotics of graphical projections. Ann Stat 12(3):793–815

    Article  MATH  MathSciNet  Google Scholar 

  38. Corchado E, MacDonald D, Fyfe C (2004) Maximum and minimum likelihood hebbian learning for exploratory projection pursuit. Data Min Knowl Disc 8(3):203–225

    Article  MathSciNet  Google Scholar 

  39. Friedman JH (1987) Exploratory projection pursuit. J Am Stat Assoc 82(397):249–266

    Article  MATH  Google Scholar 

  40. Pedrycz W, Lee D, Pizzi N (2010) Representation and classification of high-dimensional biomedical spectral data. Pattern Anal Appl 13(4):423–436

    Article  MathSciNet  Google Scholar 

  41. Gunala S, Edizkanb R (2008) Subspace based feature selection for pattern recognition. Inf Sci 178(19):3716–3726

    Article  Google Scholar 

  42. Corchado E, Fyfe C (2003) Connectionist techniques for the identification and suppression of interfering underlying factors. Int J Pattern Recognit Artif Intell 17(8):1447–1466

    Article  Google Scholar 

  43. Fyfe C, Corchado E (2002) Maximum likelihood hebbian rules. In: Verleysen M (ed) Proceedings of the 10th Eurorean Symposium on Artificial Neural Networks, Bruges, Belgium, April 24-26 (ESANN 2002), pp 143–148

  44. Corchado E, Han Y, Fyfe C (2003) Structuring global responses of local filters using lateral connections. J Exp Theor Artif Intell 15(4):473–487

    Article  MATH  Google Scholar 

  45. Seung H, Socci N, Lee D (1998) The rectified Gaussian distribution. Adv Neural Inf Process Syst 10:350–356

    Google Scholar 

  46. Nørgaard M, Ravn O, Poulsen NK, Hanse LK (2000) Neural networks for modelling and control of dynamic systems. Springer-Verlag, London

    Book  Google Scholar 

  47. Schoukens J, Rolain Y, Pintelan R (2004) Improved approximate identification of nonlinear systems. In: 21st IEEE instrumentation and measurement technology conference, Como, Italy, pp 2183–2186

  48. Hanne T (2000) Global multi-objective optimization using evolutionary algorithms. J Heuristics 6(3):347–360

    Article  MATH  Google Scholar 

  49. Srinivas N, Deb K (1995) Multi-objective function optimization using nondominated sorting genetic algorithms. Evol Comput J 2(3):221–248

    Article  Google Scholar 

  50. Deb K, Pratap A, Agarwal S, Meyarivan T (2000) A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  51. Luciano Sánchez L, Villar JR (2008) Obtaining transparent models of chaotic systems with multi-objective simulated annealing algorithms. Inf Sci 178:952–970

    Article  MATH  Google Scholar 

  52. Demuth H, Beale M, Hagan M (2010) Neural Network Toolbox User’s Guide. The Mathworks Inc., Natick

    Google Scholar 

  53. The Math Works. Global Optimization Toolbox. The MathWorks Inc., URL: http://www.mathworks.com/products/global-optimization/index.html

  54. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley & Sons, Chichester

    MATH  Google Scholar 

  55. Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  56. Riedmiller M, Braun H (1993) A directive adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings for IEEE International Conference on Neural Networks

  57. Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  58. Mackay DJC (1992) Bayesian interpolation. Neural Comput 4(3):415–447

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported through projects of the Spanish Ministry of Economy and Competitiveness [ref: TIN2010-21272-C02-01 (funded by the European Regional Development Fund), TIN2008-06681-C06-04 and SA405A12-2 from Junta de Castilla y León]. The authors would also like to thank to ESTUDIO PREVIO (Madrid-Spain) for its collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Redondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redondo, R., Sedano, J., Vera, V. et al. A novel hybrid intelligent system for multi-objective machine parameter optimization. Pattern Anal Applic 18, 31–44 (2015). https://doi.org/10.1007/s10044-013-0345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0345-7

Keywords

Navigation