Skip to main content
Log in

Mid-infrared dual-cladding photonic crystal fiber with high birefringence and high nonlinearity

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose two mid-infrared photonic crystal fibers with an elliptical As2S3 core and a dual-cladding structure with high birefringence and high nonlinearity. The cladding filling material is silica and the core material is As2S3. The full vector finite-element method is used to study the birefringence, and nonlinear coefficient of the structure in the 3–5 μm band. The Simulation results show that the birefringence of the two structures can reach a maximum of 0.2169, and the nonlinear coefficient can reach a maximum of 3763.42 W−1/km. From these characteristics, it is concluded that the proposed structure will be ideal for mid-infrared fiber sensing, precision optics and nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han, Y.G., Yoon, M.S., Kwon, O.J.: Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm. J. Korean Phys. Soc. 57(6), 1747 (2010)

    ADS  Google Scholar 

  2. Sun, X.W.: Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism. Opt. Lett. 32(17), 2484 (2007)

    ADS  Google Scholar 

  3. Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, T.A., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325 (2000)

    ADS  Google Scholar 

  4. Hansen, T.P., Broeng, J., Libori, S.E.B., Knudsen, E., Bjarklev, A., Jensen, J.R.: Highly birefringent index-guiding photonic crystal fiber. IEEE Photonics. Technol. Lett 13, 588 (2001)

    ADS  Google Scholar 

  5. Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers, measurement and future opportunities. Opt. Lett. 24, 1395 (1999)

    ADS  Google Scholar 

  6. Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961 (1997)

    ADS  Google Scholar 

  7. Limpert, J., Schreiber, T., Nolte, S.: High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11(7), 818 (2003)

    ADS  Google Scholar 

  8. Limpert, J., Liem, A., Reich, M.: Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12(7), 1313 (2004)

    ADS  Google Scholar 

  9. Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-IR supercontinuum generation in As2Se3, based chalcogenide photonic crystal fiber. A new design and analysis. Opt. Commun. 347, 13 (2015)

    ADS  Google Scholar 

  10. Bravo, M., Candiani, A., Cucinotta, A.: Remote PCF-based sensors multiplexing using optical add–drop multiplexers. Opt. Laser Technol. 57(7), 9 (2014)

    ADS  Google Scholar 

  11. Hui, Z.Q., Zhang, J.G.: Design of polarity-preserved or polarity inverted wavelength converters using cross-phase modulation in a highly nonlinear photonic crystal fiber with flat dispersion. J. Opt. 14(6), 065402 (2012)

    ADS  Google Scholar 

  12. Hui, Z.Q., Gong, J.M., Liang, M., Zhang, M.Z., Wu, H.M.: Demonstration of all-optical RZ-to-NRZ format conversion based on self phase modulation in a dispersion flattened highly nonlinear photonic crystal fiber. Opt. Laser Technol. 54(12), 7–14 (2013)

    ADS  Google Scholar 

  13. Hui, Z.Q., Zhang, J.G.: Wavelength conversion, time demultiplexing and multicasting based on cross phase modulation & four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber. J. Opt. 14(5), 055402 (2012)

    ADS  Google Scholar 

  14. Sang, X., Chu, P.L., Yu, C.: Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications. Opt. Quant Electron. 37(10), 965 (2005)

    Google Scholar 

  15. Yang, G.Q., Zhang, X., Ren, X.M.: Experimental research on all-optical switch based on photonic crystal fiber. Chin. J. Lasers. 32(12), 1650 (2005)

    Google Scholar 

  16. Ju, J., Jin, W., Demokan, M.S.: Properties of a highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett. 15(10), 1375 (2003)

    ADS  Google Scholar 

  17. Steel, M.J., Osgood, R.M.: Elliptical hole photonic crystal fibers. Opt. Lett. 26(4), 229 (2001)

    ADS  Google Scholar 

  18. Jiang, G.Y., Fu, Y., Huang, Y.: High birefringence rectangular-hole photonic crystal fiber. Opt. Fiber Technol. 26, 163 (2015)

    ADS  Google Scholar 

  19. Inci, H.D., Ozsoy, S.: Birefringence, dispersion and loss properties for PCFs with rectangular air-holes. Infrared Phys. Technol. 67, 354 (2014)

    ADS  Google Scholar 

  20. Imran, M.H., Abdur, S.M.: Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. J. Lightwave Technol. 32(23), 4578 (2011)

    Google Scholar 

  21. Bekman, H.H.P.T., Heuvel, J.C.V.D., Putten, F.J.M.V.: Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE Int. Soc. Opt. Eng. 5615, 27 (2004)

    ADS  Google Scholar 

  22. Eggleton, B.J.: Chalcogenide photonics: fabrication, devices and applications introduction. Opt. Express 18, 26632 (2010)

    ADS  Google Scholar 

  23. Chaudhuri, P.R., Maji, P.S.: Near-elliptic core triangular-lattice and square-lattice PCFs: a comparison of birefringence, cut-off and GVD characteristics towards fiber device application. J. Opt. Soc. Korea 18(3), 207 (2014)

    Google Scholar 

  24. Hui, Z., Zhang, Y., Soliman, A.H.: Mid-infrared dual-rhombic air hole Ge20Sb15Se65, chalcogenide photonic crystal fiber with high birefringence and high nonlinearity. Ceram. Int. 44(9), 10383 (2018)

    Google Scholar 

  25. Fevrier, S., Leproux, P., Couderc, V.: Microstructured fibers for sensing applications. Proc. SPIE Int. Soc. Opt. Eng. 5855, 60050E-15 (2016)

    Google Scholar 

  26. Coulombier, Q., Brilland, L., Houizot, P.: Fabrication of low losses chalcogenide photonic crystal fibers by molding process. Proc. SPIE Int. Soc. Opt. Eng. 7598(2), 75980O-9 (2010)

    Google Scholar 

  27. Wang, F., Yuan, W., Hansen, O., Bang, O.: Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt. Express 19(18), 17585 (2011)

    ADS  Google Scholar 

  28. Ali, R.A.H., Hameed, M.F.O., Obayya, S.S.A.: Ultrabroadband supercontinuum generation through photonic crystal fiber with As2S3 chalcogenide core. J. Lightwave Technol. 34, 5423 (2016)

    ADS  Google Scholar 

  29. Granzow, N., Stark, S.P., Schmidt, M.A., Tverjanovich, A.S., Wondraczek, L., Russell, P.S.J.: Supercontinuum generation in chalcogenide-silica step-index fibers. Opt. Express 19(21), 21003 (2011)

    ADS  Google Scholar 

  30. Wei, D.P., Galstian, T.V., Smolnikov, I.V.: Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber. Opt. Express 13(7), 2439–2443 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Li, K., Jia, C. et al. Mid-infrared dual-cladding photonic crystal fiber with high birefringence and high nonlinearity. Opt Rev 27, 296–303 (2020). https://doi.org/10.1007/s10043-020-00596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00596-7

Keywords

Navigation