Skip to main content
Log in

High birefringence and nonlinearity photonic crystal fiber

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this work, a new type of photonic crystal fiber is designed, which is used tellurite glass as the background material. The finite element method is implemented to study its features, for instance, dispersion, birefringence, and nonlinearity. Simulation results indicate that our designed photonic crystal fiber could obtain a higher birefringence of 3.79 × 10−2 and exhibit a maximum nonlinear coefficient of 1672.36 W−1 km−1 at 1.55 μm. About 2000 nm wide supercontinuum can be generated at the pumping wavelength of 1550 nm. The proposed photonic crystal fiber features may be utilized for optical fiber sensing, dispersion compensation, supercontinuum generation, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  2. J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)

    Article  ADS  Google Scholar 

  3. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  4. W. Wadsworth, N. Joly, J.C. Knight, T. Birks, F. Biancalana, Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers. Opt. Express 12, 299–309 (2004)

    Article  ADS  Google Scholar 

  5. M.F.H. Arif, K. Ahmed, S. Asaduzzaman, M.A.K. Azad, Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens. 6, 179–288 (2016)

    Article  Google Scholar 

  6. F. Begum, Y. Namihira, S. Razzak, S. Kaijage, N.H. Hai, T. Kinjo, K. Miyagi, N. Zou, Novel broadband dispersion compensating photonic crystal fibers. Opt. Laser Technol. 41, 679–686 (2009)

    Article  ADS  Google Scholar 

  7. M. Habib, M.I. Hasan, S.M.A. Razzak, M.A. Hossain, Y. Namihira, Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding. Optik 125, 1011–1015 (2014)

    Article  ADS  Google Scholar 

  8. P. Song, L. Zhang, Z. Wang, Q.G. Hu, S.Z. Zhao, S. Jiang, S.H. Liu, Birefringence characteristics of squeezed lattice photonic crystal fibers. J. Lightwave Technol. 25, 1771–1776 (2007)

    Article  ADS  Google Scholar 

  9. S.Q. Lou, G.B. Ren, F.P. Yan, S.S. Jian, Dispersion and polarization properties of near-rectangle core photonic crystal fibers. Acta Phys. Sin. 54, 1229–1234 (2005)

    Article  Google Scholar 

  10. D.J. Xu, H.R. Song, W. Wang, F. Yue, B. Yang, Numerical analysis of a novel high birefringence photonic crystal fiber. Optik 124, 1290–1293 (2013)

    Article  ADS  Google Scholar 

  11. M. Vieweg, T. Gissibl, S. Pricking, B.T. Kuhley, D.C. Wu, B.J. Eggleton, H. Giessen, Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Express 18, 25232–25240 (2010)

    Article  ADS  Google Scholar 

  12. Y. Gao, C. Sima, J. Cheng, B.C. Cai, K. Yuan, Z.G. Lian, M. Smietana, P. Lu, D.M. Liu, Highly-birefringent and ultra-wideband low-loss photonic crystal fiber with rhombic and elliptical holes. Opt. Commun. 450, 172–175 (2019)

    Article  ADS  Google Scholar 

  13. C.Y. Sun, W.C. Wang, H.Z. Jia, A squeezed photonic crystal fiber for residual dispersion compensation with high birefringence over S+ C+ L+ U wavelength bands. Opt. Commun. 458, 124757 (2020)

    Article  Google Scholar 

  14. Q. Xu, R.C. Miao, Y.N. Zhang, Highly nonlinear low-dispersion photonic crystal fiber with high birefringence for four-wave mixing. Opt. Mater. 35, 217–221 (2012)

    Article  ADS  Google Scholar 

  15. T.Y. Yang, E.L. Wang, H.M. Jiang, Z.J. Hu, K. Xie, High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23, 8329–8337 (2015)

    Article  ADS  Google Scholar 

  16. M. Liu, J.Y. Hou, X. Yang, B.Y. Zhao, P. Shum, Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity. Chin. Phys. B 27, 014206 (2018)

    Article  ADS  Google Scholar 

  17. M.S. Islam, J. Sultana, K. Ahmed, A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2017)

    Article  ADS  Google Scholar 

  18. R. Saha, M. Hossain, M. Rahaman, Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber. Front. Optoelectron. 12, 165–173 (2019)

    Article  Google Scholar 

  19. V. Devika, M.S.M. Rajan, Hexagonal PCF of honeycomb lattice with high birefringence and high nonlinearity. Int. J. Mod. Phys. B 34, 2050094 (2020)

    Article  ADS  Google Scholar 

  20. M.D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Fumiss, A.B. Seddon, Raman gain of selected tellurite glasses for IR fiber lasers calculated from spontaneous scattering spectra. Opt. Mater. 30, 946–951 (2008)

    Article  ADS  Google Scholar 

  21. T.Y. Huang, P. Huang, Z. Cheng, J.F. Liao, X. Wu, J.X. Pan, Design and analysis of a hexagonal tellurite photonic crystal fiber with broadband ultra-flattened dispersion in mid-IR. Optik 167, 144–149 (2018)

    Article  ADS  Google Scholar 

  22. Z.L. Liu, J. An, J.W. Xing, H.L. Du, Polarization rotator based on liquid crystal infiltrated tellurite photonic crystal fiber. Optik 127, 4391–4395 (2016)

    Article  ADS  Google Scholar 

  23. N.A. Mortensen, Effective area of photonic crystal fibers. Opt. Express 10, 341–348 (2002)

    Article  ADS  Google Scholar 

  24. J.F. Liao, Y.M. Xie, X.H. Yang, D.B. Li, T.Y. Huang, Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence. Photonics Nanostruct. 25, 19–24 (2017)

    Article  ADS  Google Scholar 

  25. Y.N. Zhang, K. Li, L.L. Wang et al., Casting preforms for micro-structured polymer optical fiber fabrication. Opt. Express 14, 5541–5547 (2006)

    Article  ADS  Google Scholar 

  26. M. Tadeusz, S.B. Barabach, O. Jacek et al., Highly birefringent micro-structured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express 18, 15113 (2010)

    Article  Google Scholar 

  27. N.A. Issa, E. Van, M.A. Fellew et al., Fabrication and study of micro-structured optical fibers with elliptical holes. Opt. Lett. 29, 1336–1338 (2004)

    Article  ADS  Google Scholar 

  28. H.E. Hamzaoui, Y. Ouerdane, L. Bigot, Sol-gel derived ionic copper-doped micro-structured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. express 20, 29751–29760 (2012)

    Article  ADS  Google Scholar 

  29. R. Bise, D. J. Trevor, Solgel-derived micro-structured fibers: fabrication and characterization, in Optical Fiber communication Conference (Optical Society of America, 2005), p. OWL6

  30. A.A. Nair, C.S. Boopathi, M. Jayaraju, M.S.M. Rajan, Numerical investigation and analysis of flattened dispersion for supercontinuum generation at very low power using hexagonal shaped photonic crystal fiber (H-PCF). Optik 179, 718–725 (2019)

    Article  ADS  Google Scholar 

  31. K. Prabu, R. Malavika, Highly birefringent photonic crystal fiber with hybrid cladding. Opt. Fiber Technol. 47, 21–26 (2019)

    Article  ADS  Google Scholar 

  32. E.L. Wang, P. Cheng, W.N. Zhao, J. Li, Q. Han, X.D. Zhou, Photonic crystal fibers with high birefringence and multiple zero dispersion wavelengths. Opt. Fiber Technol. 58, 102309 (2020)

    Article  Google Scholar 

  33. Z.K. Fan, S.G. Li, H.L. Chen, Q. Liu, G.W. An, S. Liu, A highly nonlinear and birefringent photonic crystal fiber with zero dispersion at 2μm eye-safe spectral window. J. Mod. Opt. 62, 676–681 (2015)

    Article  ADS  Google Scholar 

  34. A.P. Atsu, A.E. Kofi, Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity. Sci. Rep. 10, 21182 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The 13th Postgraduate Scientific Research Innovation Project of Yunnan University (Nos. 2021Z093, 2021Y331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Du.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Wei, F. & He, J. High birefringence and nonlinearity photonic crystal fiber. J Opt 52, 665–671 (2023). https://doi.org/10.1007/s12596-022-01026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01026-4

Keywords

Navigation