Skip to main content
Log in

Stability and molecular properties of the boron-nitrogen alternating analogs of azulene and naphthalene: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the spectroscopic information, stability and aromaticity of the boron-nitrogen azulene and naphthalene molecules are provided by the use of CC2 (geometry optimization, dipole moment, UV–vis spectrum calculations) and DFT (vibrational spectrum and NMR calculations) methodologies. One isomer of the investigated boron-nitrogen naphthalene (boroazanaphthalene) and two isomers of boron-nitrogen azulene, 1,3,4,6,8-pentaaza-2,3a,5,7,8a-pentaboraazulene (BN-azulene) and 2,3a,5,7,8a-pentaaza-1,3,4,6,8- pentaboraazulene (NB-azulene), are stable systems. However, these molecules have different properties, i.e., different stability, dipole moment, and aromaticity based on the NICS approach. BN-naphthalene has a high dipole moment magnitude showing high polar character, while naphthalene is apolar. BN- and NB-azulene are weakly polar, while ordinary azulene is highly polar in character. Also, substitution of C atoms by B and N atoms decreases the aromaticity. In the case of NB-azulene, the seven-membered ring has anti-aromaticity behavior while both rings of BN-azulene exhibit aromaticity. We expect that the new theoretical data provided in this work will be useful in identifying and characterizing experimentally the compounds investigated, and in helping our understanding of the chemistry of boron-nitrogen molecules.

Boron-nitrogen alternating analogs of azulene. Spectral distinction between isomers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell PG, Marwitz AJ, Liu SY (2012) Recent advances in azaborine chemistry. Angew Chem Int Ed Engl 51(25):6074–6092. doi:10.1002/anie.201200063

    Article  CAS  Google Scholar 

  2. Kesharwani MK, Suresh M, Das A, Ganguly B (2011) Borazine as a sensor for fluoride ion: a computational and experimental study. Tetrahedron Lett 52(28):3636–3639. doi:10.1016/j.tetlet.2011.05.018

    Article  CAS  Google Scholar 

  3. Song Y, Zhang C, Li B, Ding G, Jiang D, Wang H, Xie X (2014) Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. Nanoscale Res Lett 9:367–373

    Article  Google Scholar 

  4. J-s L, C-r Z, Li B, Cao F, Wang S-q (2011) An investigation on the synthesis of borazine. Inorg Chim Acta 366(1):173–176. doi:10.1016/j.ica.2010.10.030

    Article  Google Scholar 

  5. Lisovenko AS, Timoshkin AY (2010) Donor-acceptor complexes of borazines. Inorg Chem 49(22):10357–10369. doi:10.1021/ic101081k

    Article  CAS  Google Scholar 

  6. de Abreu L, Lopez-Castillo A (2012) Theoretical characterization of the BN and BP coronenes by IR, Raman, and UV–VIS spectra. J Chem Phys 137(4):044309–044305. doi:10.1063/1.4737519

    Article  Google Scholar 

  7. Rad AS, Ayub K (2016) Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int J Hydrog Energy 41(47):22182–22191. doi:10.1016/j.ijhydene.2016.08.158

    Article  CAS  Google Scholar 

  8. Weinmann M, Seifert HJ, Aldinger F (2000) Boron-containing, non-oxide ceramics from organometallic polymers: synthesis, thermolysis and the influence of boron on materials thermal stability. In: Davidson M, Hughes AK, Marder TB, Wade K (eds) Contemporary boron chemistry. The Royal Society of Chemistry, UK, pp 88–91

  9. Golberg D, Bando Y, Kurashima K, Sato T (2001) Synthesis and characterization of ropes made of bn multiwalled nanotubes. Scr Mater 44:1561–1565

    Article  CAS  Google Scholar 

  10. Ishii T, Sato T, Sekikawa Y, Iwata M (1981) Growth of whiskers of hexagonal boron nitride. J Cryst Growth 52:285–289

    Article  CAS  Google Scholar 

  11. Lin Y, Williams TV, Connell JW (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283. doi:10.1021/jz9002108|J

    Article  Google Scholar 

  12. Mathesh M, Wang H, Barrow CJ, Yang W (2015) Surface chemistry of two-dimensional layered nanosheets. In: Chen YI (ed) Nanotubes and nanosheets functionalization and applications of boron nitride and other nanomaterials. CRC, Boca Raton, pp 333–366

  13. Choudhary RB, Pande PP (2002) Lubrication potential of boron compounds: an overview. Lubr Sci 14:211–222

    Article  CAS  Google Scholar 

  14. Niedenzu K, Dawson JW (1965) Boron-nitrogen compounds, 1st edn. Springer, Berlin-Heidelberg. doi:10.1007/978-3-642-85826-0

    Book  Google Scholar 

  15. Dewar MJS, Lucken EAC, Whitehead MA (1960) The structure of the phosphonitrilic halides. J Chem Soc 2423–2429

  16. Snyder HR, Kuck JA, Johnson JR (1938) Organoboron compounds and the study of reaction mechanisms. Primary aliphatic boronic acids. J Am Chem Soc 60:105–111

  17. López-Castillo A (2012) Prediction of boron-phosphorous nanographene-like material. Int J Quantum Chem 112(19):3152–3157. doi:10.1002/qua.24096

    Article  Google Scholar 

  18. Pupim CF, Morgon NH, Lopez-Castillo A (2015) Spurious phosphorus pyramidalization induced by some DFT functionals. J Braz Chem Soc. doi:10.5935/0103-5053.20150138

    Google Scholar 

  19. Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128(24):7748–7749

    Article  CAS  Google Scholar 

  20. Weng Q, Wang X, Zhi C, Bando Y, Golberg D (2013) Boron nitride porous microbelts for hydrogen storage. ACS Nano 7(2):1558–1565

    Article  CAS  Google Scholar 

  21. Chen X, Gao XP, Zhang H, Zhou Z, Hu WK, Pan GL, Zhu HY, Yan TY, Song DY (2005) Preparation and electrochemical hydrogen storage of boron nitride nanotubes. J Phys Chem B 109(23):11525–11529

    Article  CAS  Google Scholar 

  22. Campbell PG, Zakharov LN, Grant DJ, Dixon DA, Liu S-Y (2010) Hydrogen storage by boron-nitrogen heterocycles: a simple route for spent fuel regeneration. J Am Chem Soc 132:3289–3291

    Article  CAS  Google Scholar 

  23. Bakus RC, Atwood DA (2006) Boron-nitrogen compounds. Encyclopedia of Inorganic Chemistry:1–16. doi:10.1002/0470862106.ia027

  24. Hosmane N (2011) Boron science: new technologies and applications. CRC, Boca Raton

  25. Uosaki K, Elumalai G, Noguchi H, Masuda T, Lyalin A, Nakayama A, Taketsugu T (2014) Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J Am Chem Soc 136(18):6542–6545. doi:10.1021/ja500393g

    Article  CAS  Google Scholar 

  26. Laubengayer AW, MJP C, Porter RF (1961) The condensation of borazine to polycyclic boron-nitrogen frameworks by pyrolytic. J Am Chem Soc 83:1337–1342

    Article  CAS  Google Scholar 

  27. Johnson CJ, Zoellner RW (2009) The smallest borazine-fused cyclacenes: novel N–H conformations in cyclo-BN-anthracene and cyclo-BN-tetracene from Hartree-Fock and density functional calculations. J Mol Struct THEOCHEM 893(1–3):9–16. doi:10.1016/j.theochem.2008.09.012

    Article  CAS  Google Scholar 

  28. Engelberts JJ, Havenith RW, van Lenthe JH, Jenneskens LW, Fowler PW (2005) The electronic structure of inorganic benzenes: valence bond and ring-current description. Inorg Chem 44(15):5266–5272

    Article  CAS  Google Scholar 

  29. Stock A, Pohland E (1926) Borwasserstoffe, VIII. Zur Kenntnis des B2H6 und des B5H11. Eur J Inorg Chem 59(9):2210–2215. doi:10.1002/cber.19260590906

    Google Scholar 

  30. Terrones M, Charlier J-C, Gloter A, Cruz-Silva E, Terrés E, Li YB, Vinu A, Zanolli Z, Dominguez JM, Terrones H, Bando Y, Golberg D (2008) Experimental and theoretical studies suggesting the possibility of metallic boron nitride edges in porous nanourchins. Nano Lett 8(4):1026–1032

    Article  CAS  Google Scholar 

  31. Bernard S, Miele P (2014) Polymer-derived boron nitride: a review on the chemistry, shaping and ceramic conversion of borazine derivatives. Materials 7(11):7436–7459. doi:10.3390/ma7117436

    Article  Google Scholar 

  32. Laubengayer AW, Beachley OT (1964) The formation and behavior of polycyclic borazines. Adv Chem Ser 42:281–289. doi:10.1021/ba-1964-0042.ch028

    Article  Google Scholar 

  33. Cragg RH, Nazery M (1986) Organoboron compounds: XXX. Polycyclic borazines. J Organomet Chem 303:329–335

    Article  CAS  Google Scholar 

  34. Gonsalves KE, Agarwal R (1988) Polyureidoborazines. Appl Organomet Chem 2:245–249

    Article  CAS  Google Scholar 

  35. Pease RS (1952) An x-ray study of boron nitride. Acta Crystallogr 5:356–361

    Article  CAS  Google Scholar 

  36. Bauer SH (1938) The structures of the hydrides of boron. IV. B2NH7 and B3N3H6. The structure of dimethylamine. J Am Chem Soc 60:524–530

    Article  CAS  Google Scholar 

  37. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  38. Schleyer PR, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3(16):2465–2468

    Article  CAS  Google Scholar 

  39. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  40. Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  41. Kiran B, Phukan AK, Jemmis ED (2001) Is borazine aromatic? Unusual parallel behavior between hydrocarbons and corresponding B-N analogues. Inorg Chem 40:3615–3618

    Article  CAS  Google Scholar 

  42. Scott LT, Kirms MA (1981) Azulene thermal rearrangements. 13C-labeling studies of automerization and isomerization to naphthalene. J Am Chem Soc 103:5875–5879

    Article  CAS  Google Scholar 

  43. McFarland JD, Welk NAJ, Zoellner RW (1992) MNDO calculations on boron-nitrogen derivatives of nonbenzenoid aromatics: I. The two fully boron-nitrogen-alternating isomers of “inorganic azulene”. Heteroat Chem 3:193–199

    Article  CAS  Google Scholar 

  44. McFarland JD, Zoellner RW (1993) Modified neglect of diatomic overlap calculations on boron-nitrogen derivatives of nonbenzenoid aromatics. II. The analysis of the 130 possible nonfullv boron-nitrogen-alternating isomers of pentaazapentaboraazulene. Heteroat Chem 4:145–157

    Article  CAS  Google Scholar 

  45. Hättig C (2003) Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. J Chem Phys 118(17):7751–7761. doi:10.1063/1.1564061

    Article  Google Scholar 

  46. Hättig C, Köhn A (2002) Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation. J Chem Phys 117(15):6939–6951. doi:10.1063/1.1506918

    Article  Google Scholar 

  47. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  48. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  49. Rappoport D, Furche F (2010) Property-optimized gaussian basis sets for molecular response calculations. J Chem Phys 133(13):134105–134111. doi:10.1063/1.3484283

    Article  Google Scholar 

  50. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  51. Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606–611

    Article  CAS  Google Scholar 

  52. Shen W, Li M, Li Y, Wang S (2007) Theoretical study of borazine and its derivatives. Inorg Chim Acta 360(2):619–624. doi:10.1016/j.ica.2006.08.028

    Article  CAS  Google Scholar 

  53. Cassoux P, Kuczkowski RL, Bryan PS, Taylor RC (1975) Microwave spectra of trimethylamine-borane. The boron-nitrogen distance and molecular dipole moment. Inorg Chem 14(1):126–129

    Article  CAS  Google Scholar 

  54. Bauer SH (1937) The structure of the hydrides of boron. III. Borine carbonyl and borine trimethylammine. J Am Chem Soc 59:1804–1812

    Article  CAS  Google Scholar 

  55. Dinda R, Ciobanu O, Wadepohl H, Hubner O, Acharyya R, Himmel HJ (2007) Synthesis and structural characterization of a stable dimeric boron(II) dication. Angew Chem Int Ed Engl 46(47):9110–9113. doi:10.1002/anie.200703616

    Article  CAS  Google Scholar 

  56. Haaland A (1989) Covalent versus dative bonds to main group metals, a useful distinction. Angew Chem Int Ed Engl 28:992–1007

    Article  Google Scholar 

  57. Straub DK (1995) Lewis structures of boron compounds involving multiple bonding. J Chem Educ 72:494–497

    Article  CAS  Google Scholar 

  58. Boese R, Maulitz AH, Stellberg P (1994) Solid-state borazine: does it deserve to be entiteled “Inorganic Benzene”? Chem Ber 127:1887–1889

    Article  CAS  Google Scholar 

  59. Matsunaga N, Gordon MS (1994) Stabilities and energetics of inorganic benzene isomers: prismanes. J Am Chem Soc 116:11407–11419

    Article  CAS  Google Scholar 

  60. Brain PT, Downs AJ, Maccallum P, Rankin DWH, Robertson HE, Forsyth GA (1991) The molecular structures of gaseous tetrakis(dimehylamino)-diboron, B2(NMe2)4, and tetrakis(methoxy)diboron, B2(OMe)4, as determined by electron diffraction. J Chem Soc Dalton Trans 34:1195–1200

    Article  Google Scholar 

  61. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PR, Robinson GH (2007) A stable neutral diborene containing a B = B double bond. J Am Chem Soc 129:12412–12413

    Article  CAS  Google Scholar 

  62. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  63. Tsuboi M, Overend J (1974) Amino wagging and inversion in hydrazines RR branch of the antisymmetric wagging band of NH2NH2. J Mol Spectrosc 52:256–268

    Article  CAS  Google Scholar 

  64. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866

    Article  CAS  Google Scholar 

  65. Jr Nelson RD, Jr Lide DR, and Maryott AA (1967) Selected Values of electric dipole moments for molecules in the gas phase. NSRDS-NBS10

  66. Möllerstedt H, Piqueras MC, Crespo R, Ottosson H (2004) Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? J Am Chem Soc 126:13938–13939

    Article  Google Scholar 

  67. Gümüş S (2013) A computational study on azaazulenes. Heterocycl Commun 19(5):369–373. doi:10.1515/hc-2013-0100

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support given by CAPES Foundation (Coordenação de Aperfeiçoamento de Pessoal de Nível superior), the São Paulo Research Foundation (FAPESP, Fundação de Amparo a Pesquisa do Estado de São Paulo) Grant 2010/11385-2 and by the CNPq (Brazilian Science Funding Agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson José Lopes Catão.

Electronic supplementary material

The ESM contains all geometric parameters as well as dipole moment orientation and vertical transition of BN-azulene, NB-azulene and BN-naphthalene molecules. A population analysis of the azulene molecule is also presented for comparison purposes.

Table S1

(DOCX 34 kb)

Table S2

(DOCX 34 kb)

Table S3

(DOCX 38 kb)

Table S4

(DOCX 36 kb)

Table S5

(DOCX 35 kb)

Figure S1

(DOCX 540 kb)

Figure S2

(DOCX 687 kb)

Figure S3

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catão, A.J.L., López-Castillo, A. Stability and molecular properties of the boron-nitrogen alternating analogs of azulene and naphthalene: a computational study. J Mol Model 23, 119 (2017). https://doi.org/10.1007/s00894-017-3279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3279-y

Keywords

Navigation