Skip to main content
Log in

Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The singlet valence excited states of an iron-porphyrin-pyrazine-carbonyl complex are investigated up to the Soret band (about 3 eV) using multi-state complete active space with perturbation at the second order (MS-CASPT2). This complex is a model for the active site of carboxy-hemoglobin/myoglobin. The spectrum of the excited states is rather dense, comprising states of different nature: d→π* transitions, d→d states, π→π* excitations of the porphyrin, and doubly excited states involving simultaneous intra-porphyrin π→π* and d→d transitions. Specific features of the MS-CASPT2 method are investigated. The effect of varying the number of roots in the state average calculation is quantified as well as the consequence of targeted modifications of the active space. The effect of inclusion of standard ionization potential-electron affinity (IPEA) shift in the perturbation treatment is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ventalon C, Fraser JM, Vos MH et al (2004) Coherent vibrational climbing in carboxyhemoglobin. Proc Natl Acad Sci U S A 101:13216–13220. doi:10.1073/pnas.0401844101

    Article  CAS  Google Scholar 

  2. Treuffet J, Kubarych KJ, Lambry J-C et al (2007) Direct observation of ligand transfer and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse upconversion. Proc Natl Acad Sci U S A 104:15705–15710. doi:10.1073/pnas.0703279104

    Article  CAS  Google Scholar 

  3. Polack T, Ogilvie JP, Franzen S et al (2004) CO vibration as a probe of ligand dissociation and transfer in myoglobin. Phys Rev Lett. doi:10.1103/PhysRevLett.93.018102

    Google Scholar 

  4. Nuernberger P, Lee KF, Bonvalet A et al (2010) Multiply excited vibration of carbon monoxide in the primary docking site of hemoglobin following photolysis from the heme. J Phys Chem Lett 1:2077–2081. doi:10.1021/jz1006324

    Article  CAS  Google Scholar 

  5. Petrich JW, Poyart C, Martin JL (1988) Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. Biochemistry 27:4049–4060. doi:10.1021/bi00411a022

    Article  CAS  Google Scholar 

  6. Franzen S, Kiger L, Poyart C, Martin J-L (2001) Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer. Biophys J 80:2372–2385. doi:10.1016/S0006-3495(01)76207-8

    Article  CAS  Google Scholar 

  7. Dreuw A, Dunietz BD, Head-Gordon M (2002) Characterization of the relevant excited states in the photodissociation of CO-ligated hemoglobin and myoglobin. J Am Chem Soc 124:12070–12071. doi:10.1021/ja026916i

    Article  CAS  Google Scholar 

  8. Dunietz BD, Dreuw A, Head-Gordon M (2003) Initial steps of the photodissociation of the CO ligated heme group. J Phys Chem B 107:5623–5629. doi:10.1021/jp0226376

    Article  CAS  Google Scholar 

  9. Ohta T, Pal B, Kitagawa T (2005) Excited state property of hardly photodissociable heme−CO adduct studied by time-dependent density functional theory. J Phys Chem B 109:21110–21117. doi:10.1021/jp052158h

    Article  CAS  Google Scholar 

  10. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288:299–306. doi:10.1016/S0009-2614(98)00252-8

    Article  CAS  Google Scholar 

  11. Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphin. J Chem Phys 30:1139. doi:10.1063/1.1730148

    Article  CAS  Google Scholar 

  12. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163. doi:10.1016/0022-2852(61)90236-3

    Article  CAS  Google Scholar 

  13. Li Manni G, Smart SD, Alavi A (2016) Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins. J Chem Theory Comput 12:1245–1258. doi:10.1021/acs.jctc.5b01190

    Article  Google Scholar 

  14. Kumar M, Pati YA, Ramasesha S (2012) A density matrix renormalization group method study of optical properties of porphines and metalloporphines. J Chem Phys 136:14112. doi:10.1063/1.3671946

    Article  Google Scholar 

  15. Perun S, Tatchen J, Marian CM (2008) Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study. ChemPhysChem 9:282–292. doi:10.1002/cphc.200700509

    Article  CAS  Google Scholar 

  16. Aspuru-Guzik A, El Akramine O, Grossman JC, Lester WA (2004) Quantum Monte Carlo for electronic excitations of free-base porphyrin. J Chem Phys 120:3049. doi:10.1063/1.1646356

    Article  CAS  Google Scholar 

  17. Sundholm D (2000) Interpretation of the electronic absorption spectrum of free-base porphin using time-dependent density-functional theory. Phys Chem Chem Phys 2:2275–2281. doi:10.1039/b001923m

    Article  CAS  Google Scholar 

  18. Sauri V, Serrano-Andrés L, Shahi ARM et al (2011) Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: a benchmark study. J Chem Theory Comput 7:153–168. doi:10.1021/ct100478d

    Article  CAS  Google Scholar 

  19. Merchán M, Ortí E, Roos BO (1994) Theoretical determination of the electronic spectrum of free base porphin. Chem Phys Lett 226:27–36. doi:10.1016/0009-2614(94)00681-4

    Article  Google Scholar 

  20. Rubio M, Roos BO, Serrano-Andrés L, Merchán M (1999) Theoretical study of the electronic spectrum of magnesium-porphyrin. J Chem Phys 110:7202. doi:10.1063/1.478624

    Article  CAS  Google Scholar 

  21. Serrano-Andrés L, Merchán M, Rubio M, Roos BO (1998) Interpretation of the electronic absorption spectrum of free base porphin by using multiconfigurational second-order perturbation theory. Chem Phys Lett 295:195–203. doi:10.1016/S0009-2614(98)00934-8

    Article  Google Scholar 

  22. Fransson T, Saue T, Norman P (2016) Four-component damped density functional response theory study of UV/Vis absorption spectra and phosphorescence parameters of group 12 metal-substituted porphyrins. J Chem Theory Comput 12:2324–2334. doi:10.1021/acs.jctc.6b00030

    Article  CAS  Google Scholar 

  23. Chen H, Lai W, Shaik S (2011) Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J Phys Chem B 115:1727–1742. doi:10.1021/jp110016u

    Article  CAS  Google Scholar 

  24. Vancoillie S, Zhao H, Radoń M, Pierloot K (2010) Performance of CASPT2 and DFT for relative spin-state energetics of heme models. J Chem Theory Comput 6:576–582. doi:10.1021/ct900567c

    Article  CAS  Google Scholar 

  25. Radoń M, Broclawik E, Pierloot K (2010) Electronic structure of selected {FeNO}7 complexes in heme and non-heme architectures: a density functional and multireference ab initio study. J Phys Chem B 114:1518–1528. doi:10.1021/jp910220r

    Article  Google Scholar 

  26. Radoń M, Pierloot K (2008) Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations. J Phys Chem A 112:11824–11832. doi:10.1021/jp806075b

    Article  Google Scholar 

  27. Ribas-Ariño J, Novoa JJ (2007) The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. ChemComm 3160. doi:10.1039/b704871h

  28. Kitagawa Y, Chen Y, Nakatani N et al (2016) A DFT and multi-configurational perturbation theory study on O2 binding to a model heme compound via the spin-change barrier. Phys Chem Chem Phys 18:18137–18144. doi:10.1039/C6CP02329K

    Article  CAS  Google Scholar 

  29. Jensen K, Roos B, Ryde U (2005) O-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. J Inorg Biochem 99:45–54. doi:10.1016/j.jinorgbio.2004.11.008

    Article  CAS  Google Scholar 

  30. Chen H, Ikeda-Saito M, Shaik S (2008) Nature of the Fe−O2 bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc 130:14778–14790. doi:10.1021/ja805434m

    Article  CAS  Google Scholar 

  31. Kepenekian M, Calborean A, Vetere V et al (2011) Toward reliable DFT investigations of Mn-porphyrins through CASPT2/DFT comparison. J Chem Theory Comput 7:3532–3539. doi:10.1021/ct2004066

    Article  CAS  Google Scholar 

  32. Alcover-Fortuny G, Caballol R, Pierloot K, de Graaf C (2016) Role of the imide axial ligand in the spin and oxidation state of manganese corrole and corrolazine complexes. Inorg Chem 55:5274–5280. doi:10.1021/acs.inorgchem.6b00194

    Article  CAS  Google Scholar 

  33. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173. doi:10.1016/0301-0104(80)80045-0

    Article  CAS  Google Scholar 

  34. Malmqvist PÅ, Pierloot K, Shahi ARM et al (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128:204109. doi:10.1063/1.2920188

    Article  Google Scholar 

  35. Vancoillie S, Zhao H, Tran VT et al (2011) Multiconfigurational second-order perturbation theory restricted active space (RASPT2) studies on mononuclear first-row transition-metal systems. J Chem Theory Comput 7:3961–3977. doi:10.1021/ct200597h

    Article  CAS  Google Scholar 

  36. Venturinelli Jannuzzi SA, Phung QM, Domingo A et al (2016) Spin state energetics and oxyl character of Mn-Oxo porphyrins by multiconfigurational ab initio calculations: implications on reactivity. Inorg Chem 55:5168–5179. doi:10.1021/acs.inorgchem.5b02920

    Article  CAS  Google Scholar 

  37. Radoń M, Broclawik E, Pierloot K (2011) DFT and ab initio study of iron-Oxo porphyrins: may they have a Low-lying iron(V)-Oxo electromer? J Chem Theory Comput 7:898–908. doi:10.1021/ct1006168

    Article  Google Scholar 

  38. Zhao H, Pierloot K, Langner EHG et al (2012) Low-energy states of manganese–Oxo corrole and corrolazine: multiconfiguration reference ab initio calculations. Inorg Chem 51:4002–4006. doi:10.1021/ic201972f

    Article  CAS  Google Scholar 

  39. Nakatsuji H, Tokita Y, Hasegawa J, Hada M (1996) Ground and excited states of carboxyheme: a SAC/SAC-CI study. Chem Phys Lett 256:220–228. doi:10.1016/0009-2614(96)00386-7

    Article  CAS  Google Scholar 

  40. Tokita Y, Nakatsuji H (1997) Ground and excited states of hemoglobin CO and horseradish peroxidase CO: SAC/SAC-CI study. J Phys Chem B 101:3281–3289. doi:10.1021/jp963805v

    Article  CAS  Google Scholar 

  41. Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149. doi:10.1016/j.cplett.2004.08.032

    Article  CAS  Google Scholar 

  42. Kerridge A (2013) A RASSCF study of free base, magnesium and zinc porphyrins: accuracy versus efficiency. Phys Chem Chem Phys 15:2197–2209. doi:10.1039/C2CP43982D

    Article  CAS  Google Scholar 

  43. Vela S, Fumanal M, Ribas-Ariño J, Robert V (2016) On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds. J Comput Chem 37:947–953. doi:10.1002/jcc.24283

    Article  CAS  Google Scholar 

  44. Kepenekian M, Robert V, Le Guennic B (2009) What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures? J Chem Phys 131:114702. doi:10.1063/1.3211020

    Article  Google Scholar 

  45. Radoń M, Rejmak P, Fitta M et al (2015) How can [MoIV(CN)6]2−, an apparently octahedral (d)2 complex, be diamagnetic? Insights from quantum chemical calculations and magnetic susceptibility measurements. Phys Chem Chem Phys 17:14890–14902. doi:10.1039/C4CP04863F

    Article  Google Scholar 

  46. Ruipérez F, Aquilante F, Ugalde JM, Infante I (2011) Complete vs restricted active space perturbation theory calculation of the Cr2 potential energy surface. J Chem Theory Comput 7:1640–1646. doi:10.1021/ct200048z

    Article  Google Scholar 

  47. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  48. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297. doi:10.1039/b508541a

    Article  CAS  Google Scholar 

  49. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057. doi:10.1039/b515623h

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  51. Bode BM, Gordon MS (1998) Macmolplt: a graphical user interface for GAMESS. J Mol Graph Model 16:133–138. doi:10.1016/S1093-3263(99)00002-9

    Article  CAS  Google Scholar 

  52. Aquilante F, De Vico L, Ferré N et al (2010) MOLCAS 7: the next generation. J Comput Chem 31:224–247. doi:10.1002/jcc.21318

    Article  CAS  Google Scholar 

  53. Karlström G, Lindh R, Malmqvist P-Å et al (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239. doi:10.1016/S0927-0256(03)00109-5

    Article  Google Scholar 

  54. Veryazov V, Widmark P-O, Serrano-Andrés L et al (2004) 2MOLCAS as a development platform for quantum chemistry software. Int J Quantum Chem 100:626–635. doi:10.1002/qua.20166

    Article  CAS  Google Scholar 

  55. Roos BO, Lindh R, Malmqvist P-Å et al (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108:2851–2858. doi:10.1021/jp031064+

    Article  CAS  Google Scholar 

  56. Roos BO, Lindh R, Malmqvist P-Å et al (2005) New relativistic ANO basis sets for transition metal atoms. J Phys Chem A 109:6575–6579. doi:10.1021/jp0581126

    Article  CAS  Google Scholar 

  57. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 82:89–155. doi:10.1016/0003-4916(74)90333-9

    Article  CAS  Google Scholar 

  58. Jansen G, Hess BA (1989) Revision of the Douglas-Kroll transformation. Phys Rev A 39:6017. doi:10.1103/PhysRevA.39.6016

    Article  Google Scholar 

  59. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 123:64107. doi:10.1063/1.1998907

    Article  Google Scholar 

  60. Allouche A-R (2011) A graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. doi:10.1002/jcc.21600

  61. Aquilante F, Pedersen TB, Lindh R (2007) Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J Chem Phys 126:194106. doi:10.1063/1.2736701

    Article  Google Scholar 

  62. Aquilante F, Malmqvist P-Å, Pedersen TB et al (2008) Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput 4:694–702. doi:10.1021/ct700263h

    Article  CAS  Google Scholar 

  63. Andersson K (1995) Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor Chim Acta 91:31–46. doi:10.1007/BF01113860

    Article  CAS  Google Scholar 

  64. Makinen MW, Eaton WA (1973) Polarized single crystal absorption spectra of carboxy- and oxyhemoglobin. Ann N Y Acad Sci 206:210–222. doi:10.1111/j.1749-6632.1973.tb43213.x

    Article  CAS  Google Scholar 

  65. Záliš S, Ben Amor N, Daniel C (2004) Influence of the halogen ligand on the near-UV−visible spectrum of [Ru(X)(Me)(CO)2(α-diimine)] (X = Cl, I; α-diimine = Me-DAB, iPr-DAB; DAB = 1,4-diaza-1,3-butadiene): an ab initio and TD-DFT analysis. Inorg Chem 43:7978–7985. doi:10.1021/ic049464e

    Article  Google Scholar 

  66. Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943. doi:10.1063/1.1590951

    Article  CAS  Google Scholar 

  67. Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin−bacteriochlorin and bacteriochlorophyll−spheroidene complexes. J Am Chem Soc 126:4007–4016. doi:10.1021/ja039556n

    Article  CAS  Google Scholar 

  68. Ben Amor N, Záliš S, Daniel C (2006) Theoretical analysis of low-lying charge transfer states in [Ru(X) (Me)(CO)2(Me-DAB)] (X=Cl, I; DAB=1,4-diaza-1,3-butadiene) complexes by TDDFT and CASSCF/CASPT2 methods. Int J Quantum Chem 106:2458–2469. doi:10.1002/qua.21041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas Applencourt for technical help and acknowledge the computational resources provided by CALMIP (Toulouse).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia Ben Amor or Marie-Catherine Heitz.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Amor, N., Soupart, A. & Heitz, MC. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. J Mol Model 23, 53 (2017). https://doi.org/10.1007/s00894-017-3226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3226-y

Keywords

Navigation