Skip to main content
Log in

Receptor recognition mechanism of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and pandemic H1N1 (2009) neuraminidase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Influenza A neuraminidase (NA) is a target for anti-influenza drugs. The function of this enzyme is to cleave a glycosidic linkage of a host cell receptor that links sialic acid (Sia) to galactose (Gal), to allow the virus to leave an infected cell and propagate. The receptor is an oligosaccharide on the host cell surface. There are two types of oligosaccharide receptor; the first, which is found mainly on avian epithelial cell surfaces, links Sia with Gal by an α2,3 glycosidic linkage; in the second, found mainly on human epithelial cell surfaces, linkage is via an α2,6 linkage. Some researchers believe that NAs from different viruses show selectivity for each type of linkage, but there is limited information available to confirm this hypothesis. To see if the linkage type is more specific to any particular NA, a number of NA-receptor complexes of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and a pandemic strain of H1N1 (2009) were constructed using homology modeling and molecular dynamics simulation. The results show that the two types of receptor analogues bound to NAs use different mechanisms. Moreover, it was found that a residue unique to avian virus NA is responsible for the recognition of the Siaα2,3Gal receptor, and a residue unique to human virus NA is responsible for the recognition of Siaα2,6Gal. We believe that this finding could explain how NAs of different virus origins always possess some unique residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wagner R, Matrosovich M, Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166. doi:10.1002/rmv.352

    Article  Google Scholar 

  2. Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408

    Article  CAS  Google Scholar 

  3. Gambaryan A, Webster R, Matrosovich M (2002) Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 147:1197–1208. doi:10.1007/s00705-002-0796-4

    Article  CAS  Google Scholar 

  4. Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, Matrosovich MN, Olsen CW, Klimov AI (2005) Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 114:15–22

    Article  CAS  Google Scholar 

  5. Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23

    Article  CAS  Google Scholar 

  6. Glaser L, Conenello G, Paulson J, Palese P (2007) Effective replication of human influenza viruses in mice lacking a major α 2,6 sialyltransferase. Virus Res 126:9–18

    Article  CAS  Google Scholar 

  7. Gambaryan AS, Tuzikov AB, Pazynina GV, Webster RG, Matrosovich MN, Bovin NV (2004) H5N1 chicken influenza viruses display a high binding affinity for Neu5Acα2-3Galβ1-4(6-HSO3)GlcNAc-containing receptors. Virology 326:310–316

    Article  CAS  Google Scholar 

  8. Gambaryan A, Yamnikova S, Lvov D, Tuzikov A, Chinarev A, Pazynina G, Webster R, Matrosovich M, Bovin N (2005) Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276–283

    Article  CAS  Google Scholar 

  9. Li M, Wang B (2006) Computational studies of H5N1 hemagglutinin binding with SA-α-2, 3-Gal and SA-α-2, 6-Gal. Biochem Biophys Res Commun 347:662–668

    Article  CAS  Google Scholar 

  10. Ito T, Couceiro JNSS, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373

    CAS  Google Scholar 

  11. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 98:11181–11186. doi:10.1073/pnas.201401198

    Article  CAS  Google Scholar 

  12. Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y (1998) The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 72:7626–7631

    CAS  Google Scholar 

  13. Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    Article  CAS  Google Scholar 

  14. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020. doi:10.1128/jvi.74.13.6015-6020.2000

    Article  CAS  Google Scholar 

  15. Katinger D, Mochalova L, Chinarev A, Bovin N, Romanova J (2004) Specificity of neuraminidase activity from influenza viruses isolated in different hosts tested with novel substrates. Arch Virol 149:2131–2140. doi:10.1007/s00705-004-0364-1

    Article  CAS  Google Scholar 

  16. Shtyrya Y, Mochalova L, Voznova G, Rudneva I, Shilov A, Kaverin N, Bovin N (2009) Adjustment of receptor-binding and neuraminidase substrate specificties in avian–human reassortant influenza viruses. Glycoconj J 26:99–109. doi:10.1007/s10719-008-9169-x

    Article  CAS  Google Scholar 

  17. Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842. doi:10.1126/science.1093155

    Article  CAS  Google Scholar 

  18. Xu X, Zhu X, Dwek RA, Stevens J, Wilson IA (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82:10493–10501. doi:10.1128/jvi.00959-08

    Article  CAS  Google Scholar 

  19. Rungrotmongkol T, Udommaneethanakit T, Malaisree M, Nunthaboot N, Intharathep P, Sompornpisut P, Hannongbua S (2009) How does each substituent functional group of oseltamivir lose its activity against virulent H5N1 influenza mutants? Biophys Chem 145:29–36

    Article  CAS  Google Scholar 

  20. Rungrotmongkol T, Intharathep P, Malaisree M, Nunthaboot N, Kaiyawet N, Sompornpisut P, Payungporn S, Poovorawan Y, Hannongbua S (2009) Susceptibility of antiviral drugs against 2009 influenza A (H1N1) virus. Biochem Biophys Res Commun 385:390–394

    Article  CAS  Google Scholar 

  21. http://www.pdb.org/pdb/explore/explore.do?structureId=2BAT

  22. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49. http://www.nature.com/nature/journal/v443/n7107/suppinfo/nature05114_S1.html

    Google Scholar 

  23. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134. doi:10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

  24. Auewarakul P, Suptawiwat O, Kongchanagul A, Sangma C, Suzuki Y, Ungchusak K, Louisirirotchanakul S, Lerdsamran H, Pooruk P, Thitithanyanont A, Pittayawonganon C, Guo CT, Hiramatsu H, Jampangern W, Chunsutthiwat S, Puthavathana P (2007) An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 81:9950–9955

    Article  CAS  Google Scholar 

  25. Jongkon N, Mokmak W, Chuakheaw D, Shaw PJ, Tongsima S, Sangma C (2009) Prediction of avian influenza A binding preference to human receptor using conformational analysis of receptor bound to hemagglutinin. BMC Genomics 10 (Suppl 3)

  26. Kumar S, Chusid M, Willoughby R, Havens P, Kehl S, Ledeboer N, Li S-H, Henrickson K (2009) Introduction of novel swine-origin influenza A (H1N1) virus into Milwaukee, Wisconsin in 2009. Viruses 1:72–83

    Article  Google Scholar 

  27. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. doi:10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b

    Article  CAS  Google Scholar 

  28. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates J Comput Chem 29:622–655. doi:10.1002/jcc.20820

    CAS  Google Scholar 

  29. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  30. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:citeulike-article-id:297084

    Article  CAS  Google Scholar 

  31. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910–8922

    Article  CAS  Google Scholar 

  32. Ryckaert J, Ciccotti G, Berendsen H (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:citeulike-article-id:2565765

    Article  CAS  Google Scholar 

  33. Delano WL (2002) The PyMOL Molecular Graphics System. http://www.pymol.org

  34. Yu K, Luo C, Qin G, Xu Z, Li N, Liu H, Shen X, Ma J, Wang Q, Yang C, Zhu W, Jiang H (2009) Why are oseltamivir and zanamivir effective against the newly emerged influenza A virus (A/H1N1)? Cell Res 19:1221–1224

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commission on Higher Education (CHE-PhD-SW_20060163), Thailand. A Scholarship from The Graduate School of Kasetsart University and Bilateral Research Cooperation (BRC2/2551) from the Faculty of Science, the National Research University Project and the postgraduate education and the Thailand Research Fund (DBG528004) are gratefully acknowledged for partially financial support. The authors would like to thank Mr. Wilhelm Josef. Holzschuh, A. Univ. Prof. Dr. Peter Wolschann , Assoc. Prof. Dr. Supa Hannongbua, and Dr. Matthew Paul Gleeson for helpful comments. The authors acknowledge the Thai National Grid Project (ThaiGrid) and WATA cluster faculty of Engineering, Kasetsart University (URL: http://www.eng.ku.ac.th) for providing computing resources that contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nipa Jongkon or Chak Sangma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongkon, N., Sangma, C. Receptor recognition mechanism of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and pandemic H1N1 (2009) neuraminidase. J Mol Model 18, 285–293 (2012). https://doi.org/10.1007/s00894-011-1071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1071-y

Keywords

Navigation