Skip to main content

Advertisement

Log in

Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are macromolecules produced by bacteria as means for storing carbon and energy in intracellular granules. PHAs have physical properties similar to those of plastics and have become of interest to industry as materials for environmentally friendly bioplastic production. There is an ongoing search for new PHA-producing bacterial strains and PHA-synthesizing enzymes tolerating extreme conditions to find ways of producing PHAs at cold temperatures and high solute concentrations. Moreover, the study of PHA producers in the sea-ice biome can aid in understanding the microbial ecology of carbon cycling in ice-associated ecosystems. In this study, PHA producers and PHA synthase genes were examined under the extreme environmental conditions of sea ice and cold seawater to find evidence of PHA production in an environment requiring adaptation to high salinity and cold temperatures. Sea ice and cold estuarine water samples were collected from the northern Baltic Sea and evidence of PHA production was gathered, using microscopy with Nile Blue A staining of PHA-granules and PCR assays detecting PHA-synthesis genes. The PHA granules and PHA synthases were found at all sampling locations, in both sea ice and water, and throughout the sampling period spanning over 10 years. Our study shows, for the first time, that PHA synthesis occurs in Baltic Sea cold-adapted bacteria in their natural environment, which makes the Baltic Sea and its cold environments an interesting choice in the quest for PHA-synthesizing bacteria and synthesis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Pucci OH, Steinbüchel A (1997) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–139

    Article  CAS  Google Scholar 

  • Amon RMW, Fitznar HP, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arahal DR, Lekunberri I, Gonzalez JM, Pascual J, Pujalte MJ, Pedros-Alio C, Pinhassi J (2007) Neptuniibacter caesariensis gen. nov., sp nov., a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 57:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Asmala E, Autio R, Kaartokallio H, Pitkanen L, Stedmon CA, Thomas DN (2013) Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10:6969–6986

    Article  CAS  Google Scholar 

  • Ayub ND, Tribelli PM, Lopez NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp 14-3 during low temperature adaptation. Extremophiles 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Berlanga M, Montero MT, Fernandez-Borrell J, Guerrero R (2006) Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9:95–102

    CAS  PubMed  Google Scholar 

  • Calace N, Castrovinci D, Maresca V, Petronio BM, Pietroletti M, Scardala S (2001) Aquatic humic substances in pack ice-seawater-sediment system. Int J Environ Anal Chem 79:315–329

    Article  CAS  Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Robiginitalea biformatagen. nov., sp nov., a novel marine bacterium in the family Flavobacteriaceae with a higher G+C content. Int J Syst Evol Microbiol 54:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Connon S, Tovanabootr A, Dolan M, Vergin K, Giovannoni S, Semprini L (2005) Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7:165–178

    Article  CAS  PubMed  Google Scholar 

  • Cota GF, Prinsenberg SJ, Bennett EB, Loder JW, Lewis MR, Anning JL, Watson NHF, Harris LR (1987) Nutrient fluxes during extended blooms of Arctic ice algae. J Geophys Res Oceans 92:1951–1962

    Article  CAS  Google Scholar 

  • Criscuolo A, Gribaldo S (2010) BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210

    Article  PubMed Central  PubMed  Google Scholar 

  • Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 247–282

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: Hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673

    Article  CAS  PubMed  Google Scholar 

  • Godoy F, Vancanneyt M, Martinez M, Steinbuchel A, Swings J, Rehm BHA (2003) Sphingopyxis chilensis sp nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53:473–477

    Article  CAS  PubMed  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea—a review. Estuar Coast Shelf Sci 70:145–160

    Article  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Op Microbiol 6:244–250

    Article  CAS  Google Scholar 

  • Kaartokallio H (2004) Food web components, and physical and chemical properties of Baltic Sea ice. Mar Ecol Prog Ser 273:49–63

    Article  CAS  Google Scholar 

  • Kaartokallio H, Kuosa H, Thomas DN, Granskog MA, Kivi K (2007) Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biol 30:183–197

    Article  Google Scholar 

  • Kaartokallio H, Sogaard DH, Norman L, Rysgaard S, Tison J-, Delille B, Thomas DN (2013) Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice. Aquat Microb Ecol 71:57–73

    Article  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237

    Article  CAS  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762

    Article  CAS  Google Scholar 

  • Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx J et al (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Heidelberg, pp 247–264

    Chapter  Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci USA 108:3653–3658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lopez NI, Julia Pettinari M, Stackebrandt E, Tribelli PM, Potter M, Steinbuechel A, Mendez BS (2009) Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol R 63:21–53

    CAS  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204

    Article  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  PubMed  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-beta-hydroxybutyrate calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85:4176–4180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risso C, Sun J, Zhuang K, Mahadevan R, DeBoy R, Ismail W, Shrivastava S, Huot H, Kothari S, Daugherty S, Bui O, Schilling CH, Lovley DR, Methe BA (2009) Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genom 10:447

    Article  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: An efficient program for phylogenetic inference on SMPs. In: 8th International Conference on Parallel Computing Technologies 3606, pp 288–302

  • Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS (2011) Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J Geophys Res Biogeo 116:G03027

    Article  Google Scholar 

  • Tal S, Okon Y (1985) Production of the reserve material poly-beta-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613

    Article  CAS  Google Scholar 

  • Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic matter in Arctic multiyear sea ice during winter—major components and relationship to ice characteristics. Polar Biol 15:477–483

    Article  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  PubMed  Google Scholar 

  • Tribelli PM, Lopez NI (2011) Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15:541–547

    Article  CAS  PubMed  Google Scholar 

  • Tribelli PM, Raiger Iustman LJ, Catone MV, Di Martino C, Revale S, Mendez BS, Lopez NI (2012) Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J Bacteriol 194:2381–2382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Underwood GJC, Fietz S, Papadimitriou S, Thomas DN, Dieckmann GS (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar Ecol Prog Ser 404:1–19

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Villanueva L, Navarrete A, Urmeneta J, Geyer R, White DC, Guerrero R (2007) Monitoring diel variations of physiological status and bacterial diversity in an estuarine microbial mat: an integrated biomarker analysis. Microb Ecol 54:523–531

    Article  PubMed  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid deposits. J Bacteriol 187:3607–3619

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Walter and Andrée de Nottbeck foundation and Academy of Finland FidiPro-programme provided funding for fieldwork and sample analysis for HK. AK, KP and MV were funded by Academy of Finland project grant. David Thomas and the WE research group are acknowledged for collaboration and logistic support in the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katariina Pärnänen.

Additional information

Communicated by H. Atomi.

The research was funded by the Academy of Finland, and University of Helsinki and Walter and Andrée de Nottbeck foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pärnänen, K., Karkman, A., Virta, M. et al. Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles 19, 197–206 (2015). https://doi.org/10.1007/s00792-014-0699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0699-9

Keywords

Navigation