Skip to main content

Advertisement

Log in

Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The McMurdo Dry Valleys in Antarctica are a favorable location for preservation of dormant microbes due to their persistent cold and dry climate. In this study, we examined cultivable bacteria in a series of algal mat samples ranging from 8 to 26539 years old. Cultivable bacteria were found in all samples except one (12303 years old), but abundance and diversity of cultivable bacteria decreased with increasing sample age. Only members of the Actinobacteria, Bacteroidetes, and Firmicutes were found in the ancient samples, whereas bacteria in the 8-year-old sample also included Cyanobacteria, Proteobacteria, and Deinococcus-Thermus. Isolates of the Gram-positive spore-forming bacterium Sporosarcina were found in 5 of 8 samples. The growth of these isolates at different temperatures was related to the phylogenetic distance among genotypes measured by BOX-PCR. These findings suggest that adaptation to growth at different temperatures had occurred among Sporosarcina genotypes in the Dry Valleys, causing the existence of physiologically distinct but closely related genotypes. Additionally, fully psychrophilic isolates (that grew at 15°C, but not 25°C) were found in ancient samples, but not in the modern sample. The preservation of viable bacteria in the Dry Valleys could potentially represent a legacy of bacteria that impacts on current microbial communities of this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antibus DE, Leff LG, Hall BL, Baeseman JL, Blackwood CB (2011) Molecular characterization of ancient algal mats from the McMurdo Dry Valleys, Antarctica. Antarct Sci (in press)

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  PubMed  CAS  Google Scholar 

  • Blackwood CB, Oaks A, Buyer JS (2005) Phylum- and class-specific PCR primers for general microbial community analysis. Appl Environ Microbiol 71:6193–6198

    Article  PubMed  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species. Version 7.5 User’s guide and application. http://viceroy.eeb.uconn.edu/estimates

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Doran PT, Wharton RA, Lyons WB (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10:85–114

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Franzmann PD, Dobson SJ (1993) The phylogeny of bacteria from a modern Antarctic refuge. Antarct Sci 5:267–270

    Article  Google Scholar 

  • Gorbushina AA, Kort R, Schulte A, Lazarus D, Schnetger B, Brumsack H, Broughton WJ, Favet J (2007) Life in Darwin’s dust: intercontinental transport and survival of microbes in the nineteenth century. Environ Microbiol 9:2911–2922

    Article  PubMed  CAS  Google Scholar 

  • Gould GW (2006) History of science–spores. J Appl Microbiol 101:507–513

    Article  PubMed  CAS  Google Scholar 

  • Hall BL, Denton GH (2000) Radiocarbon chronology of Ross Sea Drift, Eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the Last Glacial Maximum. Geogr Ann Ser A 82:305–336

    Article  Google Scholar 

  • Hall BL, Denton GH, Lux DR, Schluchter C (1997) Pliocene paleoenvironment and Antarctic ice sheet behavior: evidence from Wright Valley. Oceanogr Lit Rev 44:1468

    Google Scholar 

  • Hall BL, Denton GH, Overturf B (2001) Glacial Lake Wright, a high-level Antarctic lake during the LGM and early Holocene. Antarct Sci 13:53–60

    Article  Google Scholar 

  • Hall BL, Denton GH, Overturf B, Hendy CH (2002) Glacial Lake Victoria, a high-level Antarctic Lake inferred from lacustrine deposits in Victoria Valley. J Q Sci 17:697–706

    Article  Google Scholar 

  • Hawes I, Howard-Williams C, Vincent WF (1992) Dessication and recovery of Antarctic cyanobacterial mats. Polar Biol 12(6):587–594

    Article  Google Scholar 

  • Hong SG, Lee YK, Yim JH, Chun J, Lee HK (2008) Sanguibacter antarcticus sp. nov., isolated from Antarctic sea sand. Int J Syst Evol Microbiol 58:50–52

    Article  PubMed  CAS  Google Scholar 

  • Hughes KA, Nobbs SJ (2004) Long-term survival of human faecal microorganisms on the Antarctic Peninsula. Antarct Sci 16:293–297

    Article  Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T et al (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405

    Article  PubMed  CAS  Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Article  Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology (Reading Engl) 140:2513–2529

    Article  Google Scholar 

  • Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418

    Article  PubMed  CAS  Google Scholar 

  • Lehman JT (1976) Ecological and nutritional studies on Dinobryon Ehrenb.: seasonal periodicity and the phosphate toxicity problem. Limnol Oceanogr 21:646–658

    Article  CAS  Google Scholar 

  • Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295

    PubMed  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  • McKnight D, Tate C, Andrews E, Niyogi D, Cozzetto K, Welch K, Lyons W, Capone D (2007) Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology 89:186–204

    Article  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    Article  PubMed  CAS  Google Scholar 

  • Nedwell DB, Russell NJ, Cresswell-Maynard T (1994) Long-term survival of microorganisms in frozen material from early Antarctic base camps at McMurdo Sound. Antarct Sci 6:67–68

    Google Scholar 

  • Prabahar V, Dube S, Reddy GS, Shivaji S (2004) Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Syst Appl Microbiol 27:66–71

    Article  PubMed  CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  • Reddy G, Prakash J, Vairamani M, Prabhakar S, Matsumoto G, Shivaji S (2002) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261

    Article  PubMed  CAS  Google Scholar 

  • Reddy GSN, Matsumoto GI, Shivaji S (2003) Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 53:1363–1367

    Article  PubMed  CAS  Google Scholar 

  • Renberg I, Nilsson M (1992) Dormant bacteria in lake sediments as palaeoecological indicators. J Paleolimnol 7:127–135

    Article  Google Scholar 

  • Rollo F, Luciani S, Marota I, Olivieri C, Ermini L (2007) Persistence and decay of the intestinal microbiota’s DNA in glacier mummies from the Alps. J Archaeol Sci 34:1294–1305

    Article  Google Scholar 

  • Ronimus RS, Rueckert A, Morgan HW (2006) Survival of thermophilic spore-forming bacteria in a 90 year-old milk powder from Ernest Shackelton’s Cape Royds Hut in Antarctica. J Dairy Res 73:235–243

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Reddy GS, Raghavan PU, Sarita NB, Delille D (2004) Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. Syst Appl Microbiol 27:628–635

    Article  PubMed  CAS  Google Scholar 

  • Spaulding SA, MCKnight DM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541

    Article  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202

    Article  Google Scholar 

  • Surzycki S (2000) Basic techniques in molecular biology. Springer, Berlin

    Book  Google Scholar 

  • Suzina NE, Mulyukin AL, Kozlova AN, Shorokhova AP, Dmitriev VV, Barinova ES, Mokhova ON, El’-Registan GI, Duda VI (2004) Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology 73:435–447

    Article  CAS  Google Scholar 

  • Suzina NE, Mulyukin AL, Dmitriev VV, Nikolaev YA, Shorokhova AP, Bobkova YS, Barinova ES, Plakunov VK, El-Registan GI, Duda VI (2006) The structural bases of long-term anabiosis in non-spore-forming bacteria. Adv Space Res 38:1209–1219

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004) Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica. Int J Syst Evol Microbiol 54:445–448

    Article  PubMed  Google Scholar 

  • Vincent WF (2000a) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Vincent WF (2000b) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer, Berlin

    Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  • Wiebe WJ, Sheldon WM, Pomeroy LR (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl Environ Microbiol 58:359–364

    PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147

    Article  PubMed  Google Scholar 

  • Yi H, Yoon HI, Chun J (2005) Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55:409–416

    Article  PubMed  CAS  Google Scholar 

  • Yung PT, Shafaat HS, Connon SA, Ponce A (2007) Quantification of viable endospores from a Greenland ice core. FEMS Microbiol Ecol 59:300–306

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Kent State University and NSF grant MCB-0729783 to Jenny Baeseman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Blackwood.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antibus, D.E., Leff, L.G., Hall, B.L. et al. Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica. Extremophiles 16, 105–114 (2012). https://doi.org/10.1007/s00792-011-0410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0410-3

Keywords

Navigation