Skip to main content
Log in

Polyphasic analysis of Thermus isolates from geothermal areas in Iceland

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Genetic relationships and diversity of 101 Thermus isolates from different geothermal regions in Iceland were investigated by using multilocus enzyme electrophoresis (MLEE) and small subunit ribosomal rRNA (SSU rRNA) sequence analysis. Ten polymorphic enzymes were used and seven distinct and genetically highly divergent lineages of Thermus were observed. Six of seven lineages could be assigned to species whose names have been validated. The most diverse lineage was Thermus scotoductus. In contrast to the other lineages, this lineage was divided into very distinct genetic sublineages that may represent subspecies with different habitat preferences. The least diverse lineage was Thermus brockianus. Phenotypic and physiological analysis was carried out on a subset of the isolates. No relationship was found between growth on specific single carbon source to the grouping obtained by the isoenzyme analysis. The response to various salts was distinguishing in a few cases. No relationship was found between temperature at the isolation site and the different lineages, but pH indicated a relation to specific lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev 59:143–169

    CAS  Google Scholar 

  • Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    Article  PubMed  CAS  Google Scholar 

  • Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  • Caugant DA, Mocca LF, Frasch CE, Froholm LO, Zollinger WD, Selander RK (1987) Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol 169:2781–2792

    PubMed  CAS  Google Scholar 

  • Chung AP, Rainey FA, Valente M, Nobre MF, da Costa MS (2000) Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217

    PubMed  CAS  Google Scholar 

  • Escara JF, Hutton JR (1980) Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, O’Donnell AG (1993) Roots of bacterial systematics. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 3–54

    Google Scholar 

  • Hjorleifsdottir S, Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Species composition of cultivated and non-cultivated bacteria from short filaments in an Icelandic hot spring at 88°C. Microbial Ecol 42:117–125

    CAS  Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1987) Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int J Syst Bacteriol 37:431–436

    Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. J Syst Appl Microbiol 4:184–192

    CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Muntu HN (ed) Mammalian protein metabolism, 3rd edn. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kristjansson JK, Hreggvidsson GO (1995) Ecology and habitats of extremophiles. World J Microbiol Biotechnol 11:17–25

    Article  Google Scholar 

  • Kristjansson JK, Hreggvidsson GO, Grant WD (2000) Taxonomy of extremophiles. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic, Dordrecht, pp 229–289

    Google Scholar 

  • Kristjansson JK, Hjorleifsdottir S, Marteinsson VT, Alfredsson GA (1994) Thermus scotoductus sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50

    Google Scholar 

  • de Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Madigan MT, Parker J, Brock TD, Martinko JM (1997) Brock biology of microorganisms, 8th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Maidak BL, Cole JR, Parker Jr CT, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173

    Article  PubMed  CAS  Google Scholar 

  • Manchenko GP (1994) Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton

    Google Scholar 

  • Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259

    PubMed  CAS  Google Scholar 

  • Oshima T, Imahori K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112

    CAS  Google Scholar 

  • Petursdottir SK, Kristjansson JK (1996) The relationship between physical and chemical conditions and low microbial diversity in the Blue Lagoon geothermal lake in Iceland. FEMS Microbiol Ecol 19:39–45

    Article  CAS  Google Scholar 

  • Petursdottir SK, Hreggvidsson GO, da Costa MS, Kristjansson JK (2000) Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4:267–274

    Article  PubMed  CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    PubMed  CAS  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus. Extremophiles 5:45–51

    Article  PubMed  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Spanevello MD (2001) The phylogeny of prokaryotes associated with Australia’s Great Basin. PhD thesis. Griffith University

  • Spanevello MD, Patel BKC (2004) The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel. FEMS Microbiol Ecol 50:63–73

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Tabatabai MA (1974) A rapid method for determination of sulfate in water samples. Environ Lett 7:237–243

    Article  CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  Google Scholar 

  • Whittam TS (1995) Genetic population structure and pathogenicity in enteric bacteria. In: Baumberg S, Young JPW, Wellington EMH, Saunders JR (eds) Population genetics of bacteria. Society for General Microbiology, Symposium 52. Cambridge University Press, Cambridge, pp 217 – 245

    Google Scholar 

  • Whittam TS, Ochman H, Selander RK (1983) Multilocus genetic structure in natural populations of Escherichia coli. Proc Natl Acad Sci USA 80:1751–1755

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Sharp R (1995) The taxonomy and identification of Thermus. In: Sharp R, Williams R (eds) Thermus species. Plenum, New York, pp 1–42

    Google Scholar 

  • Williams RAD, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 45:495–499

    Article  PubMed  CAS  Google Scholar 

  • Williams RAD, Smith KE, Welch SG, Micallef J (1996) Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores, and comment on the concept of a limited geographical distribution of Thermus species. Int J Syst Bacteriol 46:403–408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudmundur O. Hreggvidsson.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hreggvidsson, G.O., Skirnisdottir, S., Smit, B. et al. Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10, 563–575 (2006). https://doi.org/10.1007/s00792-006-0530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0530-3

Keywords

Navigation