Skip to main content
Log in

Discovery of the RANKL/RANK/OPG system

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

A Correction to this article was published on 13 January 2021

This article has been updated

Abstract

Almost a quarter century has passed since discovery of receptor activator of NF-κB ligand (RANKL). This discovery had a major impact on identification of mechanisms regulating osteoclast differentiation and function, establishment of a research field bridging bone and the immune system (osteoimmunology), and development of a fully human anti-RANKL neutralizing antibody (denosumab). Denosumab is now clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many other countries, including Japan. Denosumab is a so-called blockbuster drug, with sales of 5.0 billion US dollars in 2019. This is a real success story from bench to bedside. In this review, the pivotal roles of the RANKL/RANK/OPG system in osteoclast differentiation and function are shown. RANKL is a ligand required for osteoclast generation, RANK is the receptor for RANKL, and osteoprotegerin (OPG) is a decoy receptor for RANKL. The review covers recent results showing the importance of RANKL on osteoblasts in regulation of osteogenesis and the role of RANKL-RANK dual signaling in coupling of bone resorption and formation, including demonstration of RANKL reverse signaling that we had previously hypothesized. Possible applications of anti-RANKL antibody in treatment of cancer are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 13 January 2021

    In the original publication of the article, reference 12 was published incorrectly as follows.

References

  1. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption–a hypothesis. Calcif Tissue Int 33:349–351

    Article  CAS  PubMed  Google Scholar 

  2. Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclast differentiation. Endocr Rev 13:66–80

    CAS  PubMed  Google Scholar 

  3. Takahashi N, Akatsu T, Uadagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602

    Article  CAS  PubMed  Google Scholar 

  4. Chambers TJ (1992) Regulation of osteoclast development and function. In: Rifkin BR, Gay CV (eds) Biology and physiology of the osteoclast. CRC Press, Boca Raton, pp 105–128

    Google Scholar 

  5. Takahashi N, Uadagawa N, Akatsu T, Tanaka H, Isogai Y, Suda T (1991) Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. Endocrinology 128:1792–1796

    Article  CAS  PubMed  Google Scholar 

  6. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    Article  CAS  PubMed  Google Scholar 

  7. Higashio K, Shima N, Goto M, Itagaki Y, Nagao M, Yasuda H, Morinaga T (1990) Identity of a tumor cytotoxic factor from human fibroblasts and hepatocyte growth factor. Biochem Biophys Res Commun 170:397–404

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337

    Article  PubMed  Google Scholar 

  9. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang M-S et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  10. The American Society for Bone and Mineral Research President’s Committee on Nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J Bone Miner Res 15:2293–2296

    Article  Google Scholar 

  11. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, MorinagaT HK, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  CAS  PubMed  Google Scholar 

  13. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T (1989) The bone marrow-derived stromal cell lines MC3T3–G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125:1805–1813

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  16. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  CAS  PubMed  Google Scholar 

  17. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  CAS  PubMed  Google Scholar 

  18. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, Higashio K (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253:395–400

    Article  CAS  PubMed  Google Scholar 

  20. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  23. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizuno A, Kanno T, Hoshi M, Shibata O, Yano K, Fujise N, Kinosaki M, Yamaguchi K, Tsuda E, Murakami A, Yasuda H, Higashio K (2002) Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 20:337–344

    Article  CAS  PubMed  Google Scholar 

  25. Xiong J, Cawley K, Piemontese M, Fujiwara Y, Zhao H, Goellner JJ, O’Brien CA (2018) Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat Commun 9:2909

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asano T, Okamoto K, Nakai Y, Tsutsumi M, Muro R, Suematsu A, Hashimoto K, Okamura T, Ehata S, Nitta T, Takayanagi H (2019) Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab 1:868–875

    Article  PubMed  Google Scholar 

  27. Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, Yasuda H (2009) Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res 24:1194–1205

    Article  CAS  PubMed  Google Scholar 

  28. Enomoto T, Furuya Y, Tomimori Y, Mori K, Miyazaki J, Yasuda H (2011) Establishment of a new murine model of hypercalcemia with anorexia by overexpression of soluble receptor activator of NF-κB ligand using an adenovirus vector. J Bone Miner Metab 29:414–421

    Article  CAS  PubMed  Google Scholar 

  29. Furuya Y, Mori K, Ninomiya T, Tomimori Y, Tanaka S, Takahashi N, Udagawa N, Uchida K, Yasuda H (2011) Increased bone mass in mice after single injection of anti-receptor activator of nuclear factor-κB ligand-neutralizing antibody: evidence for bone anabolic effect of parathyroid hormone in mice with few osteoclasts. J Biol Chem 286:37023–37031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takasaki W, Kajino Y, Kajino K, Murali R, Greene MI (1997) Structure-based design and characterization of exocyclic peptidomimetics that inhibit TNFα binding to its receptor. Nat Biotechnol 15:1266–1270

    Article  CAS  PubMed  Google Scholar 

  31. Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R (2006) A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Furuya Y, Inagaki A, Khan M, Mori K, Penninger JM, Nakamura M, Udagawa N, Aoki K, Ohya K, Uchida K, Yasuda H (2013) Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity. J Biol Chem 288:5562–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan A, Alles N, Soysa NS, Mamun M, Nagano K, Mikami R, Furuya Y, Yasuda H, Ohya K, Aoki K (2013) The local administration of TNF-α and RANKL antagonist peptide promotes BMP-2-inducedboneformation. J Oral Biosci 55:47–54

    Article  Google Scholar 

  34. Nakamura M, Nakamichi Y, Koide M, Yamashita T, Ara T, Nakamura H, Penninger JM, Furuya Y, Yasuda H, Udagawa N (2017) The W9 peptide directly stimulates osteoblast differentiation via RANKL signaling. J Oral Biosci 59:146–151

    Article  Google Scholar 

  35. Eissner G, Kolch W, Scheurich P (2004) Ligands working as receptors. Reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15:353–366

    Article  CAS  PubMed  Google Scholar 

  36. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N, Aoki K, Suzuki H (2018) Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561:195–200

    Article  CAS  PubMed  Google Scholar 

  37. Sugamori Y, Mise-Omata S, Maeda C, Aoki S, Tabata Y, Murali R, Yasuda H, Udagawa N, Suzuki H, Honma M, Aoki K (2016) Peptide drugs accelerate BMP-2-induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling. BioEssays 38:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozaki Y, Koide M, Furuya Y, Ninomiya T, Yasuda H, Nakamura M, Kobayashi Y, Takahashi N, Yoshinari N, Udagawa N (2017) Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS ONE 12:e0184904

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sawa M, Wakitani S, Kamei N, Kotaka S, Adachi N, Ochi M (2018) Local Administration of WP9QY (W9) peptide promotes bone formation in a rat femur delayed-union model. J Bone Miner Metab 36:383–391

    Article  CAS  PubMed  Google Scholar 

  40. Smith MR, Saad F, Coleman R, Shore N, Fizazi K et al (2012) Denosumab and bone-metastasis free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379:39–46

    Article  CAS  PubMed  Google Scholar 

  41. Scagliotti GV, Hirsh V, Siena S, Henry DH, Woll PJ, Manegold C, Solal-Celigny P, Rodriguez G, Krzakowski M, Mehta ND, Lipton L, García-Sáenz JA, Pereira JR, Prabhash K, Ciuleanu TE, Kanarev V, Wang H, Balakumaran A, Jacobs I (2012) Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol 7:1823–1829

    Article  CAS  PubMed  Google Scholar 

  42. Udagawa H, Niho S, Kirita K, Umemura S, Matsumoto S, Yoh K, Goto K (2017) Impact of denosumab use on the survival of untreated non-squamous non-small cell lung cancer patients with bone metastases. J Cancer Res Clin Oncol 143:1075–1082

    Article  CAS  PubMed  Google Scholar 

  43. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong Y-Y, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696

    Article  CAS  PubMed  Google Scholar 

  44. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694

    Article  CAS  PubMed  Google Scholar 

  45. Rao S, Sigl V, Wimmer RA, Novatchkova M, Jais A et al (2017) RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer. Genes Dev 31:2099–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, Hanada R, Joshi PA, Aliprantis A, Glimcher L, Pasparakis M, Khokha R, Ormandy CJ, Widschwendter M, Schett G, Penninger JM (2010) Osteoclast differentiation factor RANKL controls development of progestin driven mammary cancer. Nature 468:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107

    Article  CAS  PubMed  Google Scholar 

  48. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mundy G (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Rev Cancer 2:584–593

    Article  CAS  Google Scholar 

  50. Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437

    Article  CAS  PubMed  Google Scholar 

  51. Akiyama T, Yanai H, Akiyama N, Yasuda H (2012) Potentiator of cancer immunity containing RANKL antagonist. Japan Patent Kokai WO 2012/133914. 4 Oct 2012

  52. Khan IS, Mouchess ML, Zhu ML, Conley B, Fasano KJ, Hou Y, Fong L, Su MA, Anderson MS (2014) Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. J Exp Med 211:761–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smyth MJ, Yagita H, McArthur GA (2016) Combination anti-CTLA-4 and anti-RANKL in metastatic melanoma. J Clin Oncol 34:e104–e106

    Article  CAS  PubMed  Google Scholar 

  54. Ahern E, Smyth MJ, Dougall WC, Teng MWL (2018) Roles of the RANKL-RANK axis in antitumour immunity—implications for therapy. Nat Rev Clin Oncol 15:676–693

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all collaborators, especially Yoshiya Tomimori, Tetsuro Enomoto, and Yuriko Furuya, for their help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisataka Yasuda.

Ethics declarations

Conflict of interest

Dr. Hisataka Yasuda is an employee of Oriental Yeast Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 39, 2–11 (2021). https://doi.org/10.1007/s00774-020-01175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01175-1

Keywords

Navigation