Skip to main content

Advertisement

Log in

Clinically applicable antianginal agents suppress osteoblastic transformation of myogenic cells and heterotopic ossifications in mice

  • Original article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by progressive heterotopic ossification. FOP is caused by a gain-of-function mutation in ACVR1 encoding the bone morphogenetic protein type II receptor, ACVR1/ALK2. The mutant receptor causes upregulation of a transcriptional factor, Id1. No therapy is available to prevent the progressive heterotopic ossification in FOP. In an effort to search for clinically applicable drugs for FOP, we screened 1,040 FDA-approved drugs for suppression of the Id1 promoter activated by the mutant ACVR1/ALK2 in C2C12 cells. We found that that two antianginal agents, fendiline hydrochloride and perhexiline maleate, suppressed the Id1 promoter in a dose-dependent manner. The drugs also suppressed the expression of native Id1 mRNA and alkaline phosphatase in a dose-dependent manner. Perhexiline but not fendiline downregulated phosphorylation of Smad 1/5/8 driven by bone morphogenetic protein (BMP)-2. We implanted crude BMPs in muscles of ddY mice and fed them fendiline or perhexiline for 30 days. Mice taking perhexiline showed a 38.0 % reduction in the volume of heterotopic ossification compared to controls, whereas mice taking fendiline showed a slight reduction of heterotopic ossification. Fendiline, perhexiline, and their possible derivatives are potentially applicable to clinical practice to prevent devastating heterotopic ossification in FOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaplan FS, Le Merrer M, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, Groppe J, Shore EM (2008) Fibrodysplasia ossificans progressiva. Best Pract Res Clin Rheurmatol 22:191–205

    Article  CAS  Google Scholar 

  2. Glaser DL, Rocke DM, Kaplan FS (1998) Catastrophic falls in patients who have fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:110–116

    Google Scholar 

  3. Rogers JG, Geho WB (1979) Fibrodysplasia ossificans progressiva. A survey of forty-two cases. J Bone Joint Surg Am 61:909–914

    PubMed  CAS  Google Scholar 

  4. Connor JM, Evans DA (1982) Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients. J Bone Joint Surg Br 64:76–83

    PubMed  CAS  Google Scholar 

  5. Lanchoney TF, Cohen RB, Rocke DM, Zasloff MA, Kaplan FS (1995) Permanent heterotopic ossification at the injection site after diphtheria–tetanus–pertussis immunizations in children who have fibrodysplasia ossificans progressiva. J Pediatr 126:762–764

    Article  PubMed  CAS  Google Scholar 

  6. Kitterman JA, Kantanie S, Rocke DM, Kaplan FS (2005) Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics 116:e654–e661

    Article  PubMed  Google Scholar 

  7. Kawai T, Urist MR (1988) Quantitative computation of induced heterotopic bone formation by an image analysis system. Clin Orthop Relat Res 233:262–267

    PubMed  Google Scholar 

  8. Hayashi T, Kawai T, Ishikawa A, Kawai H, Nakano K, Takei Y, Kuroki K (2008) Histological analysis of induced cartilage on the biodegradable or nonbiodegradable membranes from immature muscular tissue in vitro. J Biomed Mater Res A 86:1048–1054

    PubMed  Google Scholar 

  9. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527

    Article  PubMed  CAS  Google Scholar 

  10. DiCesare PE, Nimni ME, Peng L, Yazdi M, Cheung DT (1991) Effects of indomethacin on demineralized bone-induced heterotopic ossification in the rat. J Orthop Res 9:855–861

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109:1405–1415

    PubMed  CAS  Google Scholar 

  12. Rogers JG, Dorst JP, Geho WB (1977) Use and complications of high-dose disodium etidronate therapy in fibrodysplasia ossificans progressiva. J Pediatr 91:1011–1014

    Article  PubMed  CAS  Google Scholar 

  13. Brantus JF, Meunier PJ (1998) Effects of intravenous etidronate and oral corticosteroids in fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:117–120

    Article  PubMed  Google Scholar 

  14. Gannon FH, Glaser D, Caron R, Thompson LD, Shore EM, Kaplan FS (2001) Mast cell involvement in fibrodysplasia ossificans progressiva. Hum Pathol 32:842–848

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan FS, Tabas JA, Gannon FH, Finkel G, Hahn GV, Zasloff MA (1993) The histopathology of fibrodysplasia ossificans progressiva. An endochondral process. J Bone Joint Surg Am 75:220–230

    PubMed  CAS  Google Scholar 

  16. Kaplan FS, Glaser DL, Shore EM, Pignolo RJ, Xu M, Zhang Y, Senitzer D, Forman SJ, Emerson SG (2007) Hematopoietic stem-cell contribution to ectopic skeletogenesis. J Bone Joint Surg Am 89:347–357

    Article  PubMed  Google Scholar 

  17. Glaser DL, Kaplan FS (2005) Treatment considerations for the management of fibrodysplasia ossificans progressiva. Clin Rev Bone Miner Metab 3:243–250

    Article  Google Scholar 

  18. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41

    Article  PubMed  CAS  Google Scholar 

  19. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 14:1363–1369

    Article  PubMed  CAS  Google Scholar 

  20. Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M, Iwamoto M (2011) Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat Med 17:454–460

    Article  PubMed  CAS  Google Scholar 

  21. Heemskerk J, Tobin AJ, Bain LJ (2002) Teaching old drugs new tricks. Meeting of the Neurodegeneration Drug Screening Consortium, 7–8 April 2002, Washington, DC, USA. Trends Neurosci 25:494–496

    Article  PubMed  Google Scholar 

  22. Abbott A (2002) Neurologists strike gold in drug screen effort. Nature 417:109

    Article  PubMed  CAS  Google Scholar 

  23. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R (2002) Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7:949–960

    Article  PubMed  CAS  Google Scholar 

  24. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  PubMed  CAS  Google Scholar 

  25. Kodaira K, Imada M, Goto M, Tomoyasu A, Fukuda T, Kamijo R, Suda T, Higashio K, Katagiri T (2006) Purification and identification of a BMP-like factor from bovine serum. Biochem Biophys Res Commun 345:1224–1231

    Article  PubMed  CAS  Google Scholar 

  26. Kawakami T, Uji H, Antoh M, Hasegawa H, Kise T, Eda S (1993) Squalane as a possible carrier of bone morphogenetic protein. Biomaterials 14:575–577

    Article  PubMed  CAS  Google Scholar 

  27. Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807

    Article  PubMed  CAS  Google Scholar 

  28. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  29. Vincent AM, Sakowski SA, Schuyler A, Feldman EL (2008) Strategic approaches to developing drug treatments for ALS. Drug Discov Today 13:67–72

    Article  PubMed  CAS  Google Scholar 

  30. Gerber AN, Masuno K, Diamond MI (2009) Discovery of selective glucocorticoid receptor modulators by multiplexed reporter screening. Proc Natl Acad Sci USA 106:4929–4934

    Article  PubMed  CAS  Google Scholar 

  31. Sleigh JN, Buckingham SD, Esmaeili B, Viswanathan M, Cuppen E, Westlund BM, Sattelle DB (2011) A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds. Hum Mol Genet 20:245–260

    Article  PubMed  CAS  Google Scholar 

  32. Bayer R, Mannhold R (1987) Fendiline: a review of its basic pharmacological and clinical properties. Pharmatherapeutica 5:103–136

    PubMed  CAS  Google Scholar 

  33. Nawrath H, Klein G, Rupp J, Wegener JW, Shainberg A (1998) Open state block by fendiline of L-type Ca++ channels in ventricular myocytes from rat heart. J Pharmacol Exp Ther 285:546–552

    PubMed  CAS  Google Scholar 

  34. Orosz F, Christova TY, Ovadi J (1988) Functional in vitro test of calmodulin antagonism: effect of drugs on interaction between calmodulin and glycolytic enzymes. Mol Pharmacol 33:678–682

    PubMed  CAS  Google Scholar 

  35. Nagano N (2006) Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther 109:339–365

    Article  PubMed  CAS  Google Scholar 

  36. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95:4040–4045

    Article  PubMed  CAS  Google Scholar 

  37. Wada M, Nagano N (2003) Control of parathyroid cell growth by calcimimetics. Nephrol Dial Transpl 18(Suppl 3):iii13–iii17

    Google Scholar 

  38. Watanabe H, Takahashi R, Tran QK, Takeuchi K, Kosuge K, Satoh H, Uehara A, Terada H, Hayashi H, Ohno R, Ohashi K (1999) Increased cytosolic Ca(2+) concentration in endothelial cells by calmodulin antagonists. Biochem Biophys Res Commun 265:697–702

    Article  PubMed  CAS  Google Scholar 

  39. Cheng JS, Chou KJ, Wang JL, Lee KC, Tseng LL, Tang KY, Huang JK, Chang HT, Su W, Law YP, Jan CR (2001) Fendiline mobilizes intracellular Ca2+ in Chang liver cells. Clin Exp Pharmacol Physiol 28:729–733

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Cheng J, Chan R, Tseng L, Chou K, Tang K, Chung Lee K, Lo Y, Jan C (2001) The anti-anginal drug fendiline increases intracellular Ca(2+) levels in MG63 human osteosarcoma cells. Toxicol Lett 119:227–233

    Article  PubMed  CAS  Google Scholar 

  41. Lin MC, Jan CR (2002) The anti-anginal drug fendiline elevates cytosolic Ca(2+) in rabbit corneal epithelial cells. Life Sci 71:1071–1079

    Article  PubMed  CAS  Google Scholar 

  42. Jorgensen NR (2005) Short-range intercellular calcium signaling in bone. APMIS Suppl 118:5–36

    PubMed  Google Scholar 

  43. Spangler JG (2008) Bone biology and physiology: implications for novel osteoblastic osteosarcoma treatments? Med Hypotheses 70:281–286

    Article  PubMed  CAS  Google Scholar 

  44. Lindberg JS (2005) Calcimimetics: a new tool for management of hyperparathyroidism and renal osteodystrophy in patients with chronic kidney disease. Kidney Int Suppl 67:S33–S36

    Article  Google Scholar 

  45. Zerbi S, Ruggiero P, Pedrini LA (2008) Massive soft tissue calcifications and cinacalcet. J Clin Endocrinol Metab 93:1121–1122

    Article  PubMed  CAS  Google Scholar 

  46. Mohammed IA, Sekar V, Bubtana AJ, Mitra S, Hutchison AJ (2008) Proximal calciphylaxis treated with calcimimetic ‘Cinacalcet’. Nephrol Dial Transpl 23:387–389

    Article  CAS  Google Scholar 

  47. Shah RR, Oates NS, Idle JR, Smith RL, Lockhart JD (1982) Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br Med J 284:295–299

    Article  CAS  Google Scholar 

  48. Sallustio BC, Westley IS, Morris RG (2002) Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol 54:107–114

    Article  PubMed  CAS  Google Scholar 

  49. Fardeau M, Tome FM, Simon P (1979) Muscle and nerve changes induced by perhexiline maleate in man and mice. Muscle Nerve 2:24–36

    Article  PubMed  CAS  Google Scholar 

  50. Morgan MY, Reshef R, Shah RR, Oates NS, Smith RL, Sherlock S (1984) Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 25:1057–1064

    Article  PubMed  CAS  Google Scholar 

  51. Horowitz JD, Sia ST, Macdonald PS, Goble AJ, Louis WJ (1986) Perhexiline maleate treatment for severe angina pectoris—correlations with pharmacokinetics. Int J Cardiol 13:219–229

    Article  PubMed  CAS  Google Scholar 

  52. Cole PL, Beamer AD, McGowan N, Cantillon CO, Benfell K, Kelly RA, Hartley LH, Smith TW, Antman EM (1990) Efficacy and safety of perhexiline maleate in refractory angina. A double-blind placebo-controlled clinical trial of a novel antianginal agent. Circulation 81:1260–1270

    Article  PubMed  CAS  Google Scholar 

  53. Inglis S, Stewart S (2006) Metabolic therapeutics in angina pectoris: history revisited with perhexiline. Eur J Cardiovasc Nurs 5:175–184

    Article  PubMed  Google Scholar 

  54. Fleckenstein-Grun G, Fleckenstein-Grun A, Byon YK, Kem KW 1978 Mechanisms of action of Ca++ antagonists in the treatment of coronary disease, with special reference to perhexiline maleate. In: Perhexiline Maleate Proceedings of a Symposium, pp 1–22

  55. Kennedy JA, Unger SA, Horowitz JD (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52:273–280

    Article  PubMed  CAS  Google Scholar 

  56. Stanley WC (2002) Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Invest Drug 11:615–629

    Article  CAS  Google Scholar 

  57. Willoughby SR, Stewart S, Chirkov YY, Kennedy JA, Holmes AS, Horowitz JD (2002) Beneficial clinical effects of perhexiline in patients with stable angina pectoris and acute coronary syndromes are associated with potentiation of platelet responsiveness to nitric oxide. Eur Heart J 23:1946–1954

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Morio Kawamura at Nagoya University School of Health Science for productive discussion with us on our studies, and Ms. Keiko Itano for her technical assistance. This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Ministry of Health, Labor, and Welfare of Japan.

Conflict of interest

The authors have no conflict of interest and nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinji Ohno.

Electronic supplementary material

Supplementary Figure 1. Real time RT-PCR of the native Id2 (A, B) and Id3 (C, D) genes in C2C12 cells in the presence of 0, 0,2, 1.0 μM fendiline hydrochloride (A, C) and perhexiline maleate (B, D). Values are normalized to the expression level of β2-microglobulin (β2MG) and also to that with 100 ng/ml of BMP-2 alone. Bars represent the mean and SE of three experiments. * P < 0.05, ** P < 0.01, *** P < 0.005, and not significant (ns) compared to BMP-2(+) but without a drug.

 Supplementary material 1 (PDF 175 kb)

About this article

Cite this article

Yamamoto, R., Matsushita, M., Kitoh, H. et al. Clinically applicable antianginal agents suppress osteoblastic transformation of myogenic cells and heterotopic ossifications in mice. J Bone Miner Metab 31, 26–33 (2013). https://doi.org/10.1007/s00774-012-0380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0380-2

Keywords

Navigation