Skip to main content

Advertisement

Log in

Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

GABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis. A tenfold increase in GABA production in the glutamate medium was observed only during the stationary phase and at low pH. About 30 genes and/or proteins were shown to be differentially expressed in glutamate-stimulated conditions as compared to control conditions, and the modulation exerted by glutamate on entire metabolic pathways was highlighted by the complementary nature of transcriptomics and proteomics. Most glutamate-induced responses consisted in under-expression of metabolic pathways, with the exception of glycolysis where either over- or under-expression of specific genes was observed. The energy-producing arginine deiminase pathway, the ATPase, and also some stress proteins were down-regulated, suggesting that glutamate is not only an alternative means to get energy, but also a protective agent against stress for the strain studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arsène-Ploetze F, Kugler V, Martinussen J, Bringel F (2006) Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1. J Bacteriol 188:8607–8616

    Article  PubMed  Google Scholar 

  • Budin-Verneuil A, Maguin E, Auffray Y, Dusko Ehrlich S, Pichereau V (2004) An essential role for arginine catabolism in the acid tolerance of Lactococcus lactis MG1363. Lait 84:61–68

    Article  CAS  Google Scholar 

  • Cox B, Kislinger T, Emili A (2005) Integrating gene and protein expression data: pattern analysis and profile mining. Methods 35:303–314

    Article  CAS  PubMed  Google Scholar 

  • Exterkate FA, de Veer GJCM (1987) Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Appl Environ Microbiol 53:577–583

    CAS  PubMed  Google Scholar 

  • Fernández M, Zúñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  PubMed  Google Scholar 

  • Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Giuffrida MG, Pessione E, Mazzoli R, Della Valle G et al (2001) Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 22:1705–1711

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364

    CAS  PubMed  Google Scholar 

  • Hughes MJ, Moore JC, Lane JD, Wilson R et al (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Shirai T, Ochiai H, Kasao M et al (2003) Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57:490–495

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen CM, Hammer K, Jensen PR, Martinussen J (2004) Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. Eur J Biochem 271:2438–2445

    Article  CAS  PubMed  Google Scholar 

  • Kim D, San BH, Moh SH, Park H, Kim DY, Lee S, Kim KK (2009) Structural basis for the substrate specificity of PepA from Streptococcus pneumoniae, a dodecameric tetrahedral protease. Biochem Biophys Res Commun (Epub ahead of print)

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82:3–27

    Article  CAS  PubMed  Google Scholar 

  • Konings WN (2006) Microbial transport: adaptations to natural environments. Antonie van Leeuwenhoek 90:325–342

    Article  CAS  PubMed  Google Scholar 

  • Lucas P, Landete J, Coton M, Coton E, Lonvaud-Funel A (2003) The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett 229:65–71

    Article  CAS  PubMed  Google Scholar 

  • Lucas PM, Wolken WAM, Claisse O, Lolkema JS, Lonvaud-Funel A (2005) Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardiii 0006. Appl Environ Microbiol 71:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Maligoy M, Mercade M, Cocaign-Bousquet M, Loubière P (2008) Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 74:485–494

    Article  CAS  PubMed  Google Scholar 

  • Martos GI, Minahk CJ, de Valdez GF, Morero R (2007) Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Lett Appl Microbiol 45:282–288

    Article  CAS  PubMed  Google Scholar 

  • Millichap JG, Yee MM (2003) The diet factor in pediatric and adolescent migraine. Pediatr Neurol 28:9–15

    Article  PubMed  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Nicoloff H, Elagoz A, Arsène-Ploetze F, Kammerer B et al (2005) Repression of the pyr operon in Lactobacillus plantarum prevents ist ability to grow at low carbon dioxide levels. J Bacteriol 187:2093–2104

    Article  CAS  PubMed  Google Scholar 

  • Novak L, Cocaign-Bousquet M, Lindley ND, Loubière P (1997) Metabolism and energetics of Lactococcus lactis during growth in complex or synthetic media. Appl Environ Microbiol 63:2665–2670

    CAS  PubMed  Google Scholar 

  • Pessione E, Mazzoli R, Giuffrida MG, Lamberti C et al (2005) A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5:687–698

    Article  CAS  PubMed  Google Scholar 

  • Pessione E, Pessione A, Lamberti C, Coïsson JD et al (2009) First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study. Proteomics 9:2695–2710

    Article  CAS  PubMed  Google Scholar 

  • Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707

    CAS  PubMed  Google Scholar 

  • Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19:758–760

    Article  CAS  PubMed  Google Scholar 

  • Raikar LS, Vallejo J, Lloyd PG, Hardin CD (2006) Overexpression of caveolin-1 results in increased plasma membrane targeting of glycolytic enzymes: the structural basis for a membrane associated metabolic compartment. J Cell Biochem 98:861–871

    Article  CAS  PubMed  Google Scholar 

  • Redon E, Loubière P, Cocaign-Bousquet M (2005) Role of mRNA stability during genome-wide adaptation of Lactococcus lactis to carbon starvation. J Biol Chem 280:36380–36385

    Article  CAS  PubMed  Google Scholar 

  • Sanders JW, Leenhouts K, Burghoorn J, Brands JR et al (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  CAS  PubMed  Google Scholar 

  • Schelp E, Worley S, Monzingo AF, Ernst S, Robertus JD (2001) pH-induced structural changes regulate histidine decarboxylase activity in Lactobacillus 30a. J Mol Biol 306:727–732

    Article  CAS  PubMed  Google Scholar 

  • Singh OV, Nagaraj NS (2006) Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomic Proteomic 4:355–362

    Article  CAS  PubMed  Google Scholar 

  • Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    Article  CAS  PubMed  Google Scholar 

  • Thompson (1987) Sugar transport in the lactic acid bacteria. In: Reizer J, Peterkofsky A (eds) Sugar transport and metabolism in gram-positive bacteria. Ellis Horwood, Chichester, pp 15–38

    Google Scholar 

  • Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D (2006) Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188:8118–8127

    Article  CAS  PubMed  Google Scholar 

  • Van de Guchte M, Serror P, Chervaux C, Smokvina T et al (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216

    Article  PubMed  Google Scholar 

  • Vercauteren FG, Arckens L, Quirion R (2007) Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids 33:405–414

    Article  CAS  PubMed  Google Scholar 

  • Wilkins JC, Beighton D, Homer KA (2003) Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. Appl Environ Microbiol 69:5290–5296

    Article  CAS  PubMed  Google Scholar 

  • Willemoës M, Kilstrup M, Roepstorff P, Hammer K (2002) Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase. Proteomics 2:1041–1046

    Article  PubMed  Google Scholar 

  • Yan D (2007) Protection of the glutamate pool concentration in enteric bacteria. Proc Natl Acad Sci USA 104:9475–9480

    Article  CAS  PubMed  Google Scholar 

  • Zuobi-Hasona K, Crowley PJ, Hasona A, Bleiweis AS, Brady LJ (2005) Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis 26:1200–1205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research, conceived in the context of the CESQTA (Center for Food Safety and Quality, Piedmont, Italy), has been supported by GALILEE-EGIDE project. This paper is published despite the effects of the Italian law 133/08. This law drastically reduces public funds to public Italian universities, which is particularly dangerous for scientific free research, and it will prevent young researchers from getting a position, either temporary or tenured, in Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Pessione.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoli, R., Pessione, E., Dufour, M. et al. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 39, 727–737 (2010). https://doi.org/10.1007/s00726-010-0507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0507-5

Keywords

Navigation