Skip to main content
Log in

Peculiarities of \(^{57}\)Fe NMR Spectrum in Micro- and Nanocrystalline Europium Orthoferrites

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

NMR spectra of \(^{57}\)Fe dispersed europium orthoferrite in powder samples with micro- and nanocrystalline particles were studied for the first time. The material was synthesized by glycine–nitrate combustion, which allowed to obtain the specimens with granular diameters of 60 nm (nano-\({\text {EuFeO}}_3\)) and \(1.5\,\upmu {\text {m}}\) (micro-\({\text {EuFeO}}_3\)). It was found out that the spectra are more complex than could be expected for a compound with a single crystallographic position of \({\text {Fe}}^{3+}\) ions, and it was also identified that there is a noticeable difference in samples with different fineness. Assumptions about the possible physical nature of the observed effects are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Niu, W. Du, W. Du, Sens. Actuators B 99, 399–404 (2004)

    Google Scholar 

  2. X. Niu, H. Li, G. Liu, J. Mol. Catal. A 232, 89–93 (2005)

    Google Scholar 

  3. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1–8 (2006)

    ADS  Google Scholar 

  4. Y. Dwivedi, S.C. Zilio, J. Nanosci. Nanotechnol. 14, 1–20 (2014)

    Google Scholar 

  5. M. Shang, Ch. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan, Sh. Feng, Appl. Phys. Lett. 102, 062903 (2013)

    ADS  Google Scholar 

  6. Zh. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, J. Alloys Compd. 583, 21–31 (2014)

    Google Scholar 

  7. A. Bombik, H. Böhm, J. Kusz, A.W. Pacyna, J. Magn. Magn. Mater. 234, 443–453 (2001)

    ADS  Google Scholar 

  8. J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007)

    ADS  Google Scholar 

  9. Y.J. Choi, C.L. Zhang, N. Lee, S.-W. Cheong, Phys. Rev. Lett. 105, 097201 (2010)

    ADS  Google Scholar 

  10. Y. Tokura, Sh. Seki, Adv. Mater. 22, 1554–1565 (2010)

    Google Scholar 

  11. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 1–15 (2016)

    Google Scholar 

  12. S. Radhakrishnan, J. Rangarajan, K. Baerner, J. Nanophotonics 8, 083086 (2014)

    ADS  Google Scholar 

  13. N.T. Thuy, D.L. Minh, Adv. Mater. Sci. Eng. 2012, 1–6 (2012)

    Google Scholar 

  14. K.D. Martinson, I.S. Kondrashkova, V.I. Popkov, Russ. J. Appl. Chem. 90, 980–985 (2017)

    Google Scholar 

  15. V.I. Popkov, O.V. Almjasheva, V.N. Nevedomskyi, V.V. Sokolov, V.V. Gusarov, Nanosyst. Phys. Chem. Math. 6, 866–874 (2015)

    Google Scholar 

  16. O.V. Komova, V.I. Simagina, S.A. Mukha, O.V. Netskina, G.V. Odegova, O.A. Bulavchenko, A.V. Ishchenko, A.A. Pochtar, Adv. Powder Technol. 27, 496–503 (2016)

    Google Scholar 

  17. V.V. Zvereva, V.I. Popkov, Ceram. Int. 45, 1380–1384 (2019)

    Google Scholar 

  18. N.I. Steblevskaya, M.A. Medkov, M.V. Belobeletskaya, IJLRST 2, 45–47 (2013)

    Google Scholar 

  19. Z.M. Stadnik, E. de Boer, Solid State Commun. 50, 335–337 (1984)

    ADS  Google Scholar 

  20. M. Sivakumar, A. Gedanken, D. Bhattacharya, I. Brukental, Y. Yeshurun, W. Zhong, Y.W. Du, I. Felner, I. Nowik, Chem. Mater. 16, 3623–3632 (2004)

    Google Scholar 

  21. T.N. Stanislavchuk, Y. Wang, Y. Janssen, G.L. Carr, S.-W. Cheong, A.A. Sirenko, Phys. Rev. B 93, 094403 (2016)

    ADS  Google Scholar 

  22. S. Artyukhin, M. Mostovoy, N.P. Jensen, D. Le, K. Prokes, V.G. de Paula, H.N. Bordallo, A. Maljuk, S. Landsgesell, H. Ryll, B. Klemke, S. Paeckel, K. Kiefer, K. Lefmann, L.Th. Kuhn, D.N. Argyriou, Nat. Mater. 11, 694–699 (2012)

    ADS  Google Scholar 

  23. H. Xu, X. Hu, L. Zhang, Cryst. Growth Des. 8, 2061–2065 (2008)

    Google Scholar 

  24. A.S. Karnachev, Yu.I. Klechin, N.M. Kotvun, A.S. Moskvin, E.E. Solov’ev, JETP 51, 592–602 (1980)

    ADS  Google Scholar 

  25. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer International Publishing, Cham, 2014), pp. 1–782

    Google Scholar 

  26. I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835–4846 (1982)

    ADS  Google Scholar 

  27. I. Sosnowska, M. Loewenhaupt, W.I.F. David, R.M. Ibberson, Phys. B 180–181, 117–118 (1992)

    ADS  Google Scholar 

  28. A.V. Zalesskii, A.K. Zvezdin, A.A. Frolov, A.A. Bush, JETP Lett. 71, 465–468 (2000)

    ADS  Google Scholar 

  29. B. Andrzejewski, A. Molak, B. Hilczer, A. Budziak, R. Bujakiewicz-Korońska, J. Magn. Magn. Mater. 342, 17–26 (2013)

    ADS  Google Scholar 

  30. B. Xu, B. Dupé, Ch. Xu, H. Xiang, L. Bellaiche, Phys. Rev. B 98, 184420 (2018)

    ADS  Google Scholar 

  31. R.S. Fishman, J.T. Haraldsen, N. Furukawa, Sh. Miyahara, Phys. Rev. B 87, 134416 (2013)

    ADS  Google Scholar 

  32. A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R.D. Johnson, R. Rüffer, A.F. Popkov, C. Carrétéro, P. Rovillain, J.-M. Le Breton, B. Dkhil, M. Cazayous, Y. Gallais, M.-A. Méasson, A. Sacuto, P. Manuel, A.K. Zvezdin, A. Barthélémy, J. Juraszek, M. Bibes, Adv. Mater. 29, 1602327 (2017)

    Google Scholar 

  33. I.O. Troyanchuk, M.V. Bushinsky, D.V. Karpinsky, O.S. Mantytskaya, V.V. Fedotova, O.I. Prochnenko, Phys. Status Solidi B 246, 1901–1907 (2009)

    ADS  Google Scholar 

  34. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State 45, 141–145 (2003)

    ADS  Google Scholar 

  35. X. Zhang, Y. Sui, X. Wang, Y. Wang, Zh. Wang, J. Alloys Compd. 507, 157–161 (2010)

    Google Scholar 

  36. P.C. Sati, M. Kumar, S. Chhoker, M. Jewariya, Ceram. Int. 41, 2389–2398 (2015)

    Google Scholar 

  37. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766–772 (2007)

    ADS  Google Scholar 

  38. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Phys. Rev. Lett. 95, 087206 (2005)

    ADS  Google Scholar 

  39. I.S. Lyubutin, S.A. Pikin, J. Phys. Condens. Matter 25, 236001 (2013)

    ADS  Google Scholar 

  40. I.H. Lone, J. Aslam, N.R.E. Radwan, A.H. Bashal, A.F.A. Ajlouni, A. Akhter, Nanoscale Res. Lett. 14, 142 (2019)

    ADS  Google Scholar 

  41. J.-H. Lee, Y.K. Jeong, J.H. Park, M.-A. Oak, H.M. Jang, J.Y. Son, J.F. Scott, Phys. Rev. Lett. 107, 117201 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by OP RDE project no. CZ.02.2.69/0.0/0.0/16_027/0008495, International Mobility of Researchers at Charles University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Sklyarova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklyarova, A., Popkov, V.I., Pleshakov, I.V. et al. Peculiarities of \(^{57}\)Fe NMR Spectrum in Micro- and Nanocrystalline Europium Orthoferrites. Appl Magn Reson 51, 1701–1710 (2020). https://doi.org/10.1007/s00723-020-01224-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01224-y

Navigation