Skip to main content
Log in

Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Powdered nanocrystalline europium orthoferrite was synthesized by the glycine-nitrate combustion method, and specific features of its formation were studied in relation to the redox composition of the starting reaction mixture. The products of glycine-nitrate combustion were characterized by X-ray fluorescence microanalysis, X-ray diffraction analysis, scanning electron microscopy, and helium pycnometry. It was found that, depending on the glycine-nitrate ratio, EuFeO3 nanopowders with average crystallite size of 28 ± 3 to 46 ± 5 nm can be obtained. The crystallites form under the given conditions porous micrometer-size agglomerates with developed surface. Their morphology and characteristic size vary with the redox composition of the reaction mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tugova, E.A. and Karpov, O.N., Nanosyst.: Phys., Chem., Math., 2014, vol. 5, no. 6, pp. 854–860.

    Google Scholar 

  2. Tugova, E., Yastrebov, S., Karpov, O., et al., J. Cryst. Growth, 2014, vol. 467, pp. 88–92.

    Article  Google Scholar 

  3. Steblevskaya, N.I., Medkov, M.A., Belobeletskaya, M.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 3, pp. 251–254.

    Article  CAS  Google Scholar 

  4. Benerjee, S., Functional Material: Preparation, Processing and Application, New York: Elsevier, 2011.

    Google Scholar 

  5. Zolfaghari, A., J. Solid-State Circuits, 2001, vol. 36, pp. 730–745.

    Article  Google Scholar 

  6. Sugimoto, M., J. Am. Ceram. Soc., 1999, vol. 82, no. 2, pp. 269–280.

    Article  CAS  Google Scholar 

  7. Patil, J.Y., Digambar, Y.N., and Gurav, J.L., Ceram. Int., 2014, vol. 40, no. 7, pp. 10607–10613.

    Article  CAS  Google Scholar 

  8. Kemeng, J., Solid State Sci., 2014, vol. 27, pp. 36–42.

    Article  Google Scholar 

  9. Lingling, J., Zhiyuan, C., Liang, F., et al., J. Am. Ceram. Soc., 2011, vol. 94, no. 10, pp. 3418–3424.

    Article  Google Scholar 

  10. Hua, X., Xianluo, H., and Lizhi, Z., Cryst. Growth Des., 2008, vol. 8, no. 7, pp. 2061–2065.

    Article  Google Scholar 

  11. Xinshu, N., Honghua, L., and Guoguang, L., J. Mol. Catal., 2005, vol. 232, pp. 89–93.

    Article  Google Scholar 

  12. Nguyen, A.T., Phan, Ph.H.Nh., Mittova, I.Ya., et al., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 3, pp. 459–463.

    Google Scholar 

  13. Kuklo, L.I. and Tolstoy, V.P., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, pp. 1050–1054.

    Google Scholar 

  14. Pena, M.A. and Fierro, L.G., Chem. Rev., 2001, vol. 101, no. 7, pp. 1981–2017.

    Article  CAS  Google Scholar 

  15. Dyachenko, S.V., Martinson, K. D., Cherepkova, I.A., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 690–696.

    Article  CAS  Google Scholar 

  16. Gubin, S.P., Koksharov, Ya., Khomutov, G.B., et al., Russ. Chem. Rev., 2005, vol. 74, no. 6, pp. 489–520.

    Article  CAS  Google Scholar 

  17. Kooti, M. and Naghdi Sedeh, A., J. Sci. Technol., 2013, vol. 29, no. 1, pp. 34–38.

    CAS  Google Scholar 

  18. Pourgolmohammad, B., Massoudpanah, S.M., and Aboutalebi, M.R., Ceram. Int., 2017, vol. 43, no. 4, pp. 3797–3803.

    Article  CAS  Google Scholar 

  19. Kondakindi, R.R., Karan, K., and Peppley, B.A., Ceram. Int., 2012, vol. 38, no. 1, pp. 449–456.

    Article  CAS  Google Scholar 

  20. Falcon, H., Barbero, J.A., and Alonso, J.A., Chem. Mater., 2002, vol. 14, pp. 2325–2333.

    Article  CAS  Google Scholar 

  21. Popkov, V.I., Almjasheva, O.V., and Gusarov, V.V., Russ. J. Appl. Chem., 2014, vol. 87, no. 10, pp. 1417–1421.

    Article  CAS  Google Scholar 

  22. Gimaztdinova, M.M., Tugova, E.A., Tomkovich, M.V., et al., Kondens Sredy Mezhfaz. Granitsy, 2016, vol. 18, no. 3, pp. 422–431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Martinson.

Additional information

Original Russian Text © K.D. Martinson, I.S. Kondrashkova, V.I. Popkov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 8, pp. 980−985.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinson, K.D., Kondrashkova, I.S. & Popkov, V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russ J Appl Chem 90, 1214–1218 (2017). https://doi.org/10.1134/S1070427217080031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217080031

Navigation