Skip to main content
Log in

Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Our initial objective has been to examine the suggestion of Zürcher et al. (Nature 392:665–666, 1998) that the naturally occurring variations in stem diameter of two experimental trees of Picea alba were related to near-simultaneous variations in the lunisolar tidal acceleration. The relationship was positive: Lunar peaks were roughly synchronous with stem diameter peaks. To extend the investigation of this putative relationship, additional data on stem diameter variations from six other tree species were gathered from published literature. Sixteen sets of data were analysed retrospectively using graphical representations as well as cosinor analysis, statistical cross-correlation and cross-spectral analysis, together with estimated values of the lunisolar tidal acceleration corresponding to the sites, dates and times of collection of the biological data. Positive relationships were revealed between the daily variations of stem diameter and the variations of the lunisolar tidal acceleration. Although this relationship could be mediated by a 24.8-h lunar rhythm, the presence of a solar rhythm of 24.0 h could not be ruled out. Studies of transpiration in two of the observed trees indicated that although this variable was not linked to stem diameter variation, it might also be subject to lunisolar gravitational regulation. In three cases, the geomagnetic Thule index showed a weak but reciprocal relationship with stem diameter variation, as well as a positive relationship with the lunisolar tidal force. In conclusion, it seems that lunar gravity alone could influence stem diameter variation and that, under certain circumstances, additional regulation may come from the geomagnetic flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In the publications of Cantiani and Sorbetti Guerri (1989) and of Cantiani et al. (1994), the Latin name of Norway spruce [‘abete rosso’ (It.) or ‘l’épicéa’ (Fr.)] is given as Picea excelsa Link., whereas it is given as Picea abies Karst. in the publication of Zürcher et al. (1998). Clearly, the same individual tree is being referred to in each case. The name Picea abies (L.) Karsten is retained here.

  2. “Ainsi les contours chaotiques de tel out el phénomèna dans ses forms dynamiques subissent quand on change de point de vue, une transformation. Il se révèle comme un movement harmonieux qu’on peut figurer par une série d’oscillations sinusoïdales soumis dans le temps aux oscillations des forces invisibles de l’energie cosmique ou solaire.” (Tchijevsky 1940, p224).

Abbreviations

CD:

Coefficient of determination

δD:

Stem diameter variation

δg:

Lunisolar tidal acceleration (vertical component)

Th:

Thule index

T s :

Rate of transpiration

References

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624

    Article  CAS  PubMed  Google Scholar 

  • Akasofu S-I (1982) Interaction between a magnetized plasma flow and a strongly magnetized celestial body with an ionized atmosphere: energetics of the magnetosphere. Annu Rev Astron Astrophys 20:117–138

    Article  Google Scholar 

  • Barlow PW (2007) Foreword. In: Klein G (ed) Farewell to the internal clock. A contribution in the field of chronobiology. Springer, New York, pp vii–xx

    Google Scholar 

  • Barlow PW, Powers SJ (2005) Predicting the environmental thresholds for cambial and secondary vascular tissue development in stems of hybrid aspen. Ann Forest Sci 62:565–573

    Article  Google Scholar 

  • Barlow PW, Klingelé E, Klein G, Mikulecký M (2008) Leaf movements of bean plants and lunar gravity. Plant Signal Behav 3:1083–1090

    Article  Google Scholar 

  • Bartels J (1957) Gezeitenkräfte. In: Flügge S (ed) Handbuch der Physik – Encyclopedia of physics XLVIII, Geophysik II. Springer, Berlin, pp 734–774

    Google Scholar 

  • Bartlett MS (1953) An introduction to stochastic processes with special reference to methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Bingham Ch, Arbogast B, Cornélissen GG, Lee JK, Halberg F (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiology 9:397–439

    CAS  Google Scholar 

  • Breus TK, Cornélissen G, Halberg F, Levitan AE (1995) Temporal associations of life with solar and geophysical activity. Ann Geophys 13:1211–1222

    Article  CAS  Google Scholar 

  • Brown FA Jr (1964) The biological rhythm problem and its bearing on space biology. Adv Astronaut Sci 17:29–39

    Google Scholar 

  • Brown FA Jr (1969) A hypothesis for extrinsic timing of circadian rhythms. Can J Bot 47:287–298

    Article  Google Scholar 

  • Brown FA Jr (1976) Biological clocks: endogenous cycles synchronized by subtle geophysical rhythms. BioSystems 8:67–81

    Article  PubMed  Google Scholar 

  • Burr HS (1945) Diurnal potentials in the maple tree. Yale J Biol Med 17:727–735

    Google Scholar 

  • Cantiani M (1978) Il ritmo di accrescimento diurno della Douglasia del Tiglio e del Liriodendro a Vallombrosa. L’Italia Forestale e Montana 2:57–74

    Google Scholar 

  • Cantiani M, Sorbetti Guerri F (1989) Traspirazione e ritmo circadiano delle variazioni reversibili del diametro dei fusti di alcune pianti arboree. L’Italia Forestale e Montana 5:341–372

    Google Scholar 

  • Cantiani M, Cantiani M-G, Sorbetti Guerri F (1994) Rythmes d’accroissement en diametre des arbres forestiers. Rév Forest Franç 46:349–358

    Article  Google Scholar 

  • Daudet F-A, Améglio Th, Archilla O, Lacointe A (2005) Experimental analysis of the role of water and carbon in tree stem diameter variations. J Exp Bot 56:135–144

    CAS  PubMed  Google Scholar 

  • Dorda G (2004) Sun Earth, Moon—the influence of gravity on the development of organic structures. Sudetendeutsche Akad Wiss Künste, Naturwiss Kl 25:9–44

    Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    Article  PubMed  Google Scholar 

  • Hannan EJ (1970) Multiple time series. Wiley, New York, pp 331–455

    Book  Google Scholar 

  • Khabarova OV (2004) Investigation of the Tchizhevsky–Velhover effect. Biophys 49(suppl 1):S60–S67

    Google Scholar 

  • Klein G (2007) Farewell to the internal clock. A contribution in the field of chronobiology. Springer, New York

    Google Scholar 

  • Lang H-J (1972) Korrelation und Kausalität bei lunaren Periodizitätserscheinungen in Biologie und Geophysik. In: Rensing L, Birukow G (eds) Mechanismen und Bedeutung schwingender Systeme. Nachricht Akad Wissenschaften Göttingen, Mathematische-Physikalische Klasse, 1972, pp 30–34

  • Longman IM (1959) Formulas for computing the tidal acceleration due to the Moon and the Sun. J Geophys Res 64:2351–2355

    Article  Google Scholar 

  • Maeda H (1968) Variation in geomagnetic field. Space Sci Rev 8:555–590

    Article  Google Scholar 

  • Mayaud PN (1980) Derivation, meaning and use of the geomagnetic indices. Geophysical Monograph 22. AGU, Washington

    Google Scholar 

  • Melchior P (1983) The tides of the planet Earth. Pergamon Press, Oxford

    Google Scholar 

  • Meluzzi G, Sorbetti Guerri F (1989) Apparecchiature per il rilevamento di movimenti diametrici periodici e della traspirazione di piante arboree. L’Italia Forestale e Montana 5:373–390

    Google Scholar 

  • Nelson W, Tong YL, Lee J-K, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiology 6:305–323

    CAS  Google Scholar 

  • O’Brien TP, McPherron RL (2002) Seasonal and diurnal variation of Dst dynamics. J Geophys Res 107(No. A11):1341–1351

    Article  Google Scholar 

  • Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32–37

    Article  CAS  PubMed  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2008) Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiol 28:469–480

    PubMed  Google Scholar 

  • Sevanto S, Mikkelsen TN, Pilegaard K, Vesala T (2003) Comparison of tree stem diameter variations in beech (Fagus sylvestris L.) in Sorø Denmark and in Scots pine (Pinus sylvestris L.) in Hyytiälä Finland. Boreal Env Res 8:457–464

    Google Scholar 

  • Tchijevsky AL (1940) Cosmobiologie et rythme du milieu extérieur. Acta Med Scand Suppl 108:211–226

    Google Scholar 

  • Tomaschek R (1957) Tides of the solid Earth. In: Flügge S (ed) Handbuch der Physik—Encyclopedia of physics XLVIII, Geophysik II. Springer, Berlin, pp 775–845

    Google Scholar 

  • Tonewood (2009) Moon wood. General feature and characteristics of Tonewood. http://www.tonewood.ch/moonwood.html, accessed 26/11/2009

  • Troshichev OA, Dmitrieva NP, Kuznetsov BM (1979) Polar cap magnetic activity as a signature of substorm development. Planet Space Sci 27:217–221

    Article  Google Scholar 

  • Vasil’eva NI (1998) Correlations between terrestrial and space processes within the framework of universal synchronization. Biophys 43:658–659

    Google Scholar 

  • Vesala T, Sevanto S, Paatero P, Nikinmaa E, Perämäki M, Ala-Nissilä T, Kääriäinen J, Virtanen H, Irvine J, Grace J (2000) Do tree stems shrink and swell with the tides? Tree Physiol 20:633–635

    Google Scholar 

  • Volkmann D, Tewinkel M (1996) Gravisensitivity of cress roots: investigations of threshold values under specific conditions of sensor physiology in microgravity. Plant Cell Environm 19:1195–1202

    Article  CAS  Google Scholar 

  • Volland H (1988) Atmospheric tidal and planetary waves. Kluwer, Dordrecht

    Google Scholar 

  • Webb HM, Brown FA Jr (1959) Timing long-cycle physiological rhythms. Physiol Rev 39:127–161

    CAS  PubMed  Google Scholar 

  • Zhou S-A, Uesaka M (2006) Bioelectrodynamics in living organisms. Int J Eng Sci 44:67–92

    Article  CAS  Google Scholar 

  • Żurbicki Z (1973) Atmospheric electricity and plant nutrition. Acta Hort 29:413–427

    Google Scholar 

  • Zürcher E (1999) Lunar rhythms in forestry traditions—lunar-correlated phenomena in tree biology and wood properties. Earth Moon Planets 85–86:463–478

    Article  Google Scholar 

  • Zürcher E, Cantiani M-G, Sorbetti-Guerri F, Michel D (1998) Tree stem diameters fluctuate with tide. Nature 392:665–666

    Article  Google Scholar 

  • Zürcher E, Schlaepfer R, Conedera M, Giudici F (2010) Looking for differences in wood properties as a function of the felling date: lunar phase-correlated variations in the drying behaviour of Norway spruce (Picea abies Karst.) and sweet chestnut (Castanea sativa Mill.). Trees 24:31–41

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15:50–57

    Article  Google Scholar 

Download references

Acknowledgement

Thanks are due to two anonymous referees for their constructive commentaries. In addition, Professors Gerhard Dorda (Munich) and Ernst Zürcher (Biel) kindly provided supportive remarks and also useful information in the form of reprints and preprints of their own publications and those of others. Professor D.T. Clarkson and Dr S. Barlow are also thanked for their patient reading and commentary upon early drafts of this work. Mr Timothy Colborn expertly prepared the diagrams.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Barlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, P.W., Mikulecký, M. & Střeštík, J. Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. Protoplasma 247, 25–43 (2010). https://doi.org/10.1007/s00709-010-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0136-6

Keywords

Navigation