Skip to main content
Log in

Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The description of the mechanical behaviour of brick/block masonry through equivalent continua is presented here as a paradigmatic example of the problem of gross modelling of discontinuous and heterogeneous materials as continua with microstructure. The approaches reported in the literature differ for the way identification of the continuum is carried out or the nature of the continuum itself. In this paper, continuous models equivalent to rigid particle systems with free or constrained rotations are derived within the general framework of the principle of virtual work. In particular, an integral equivalence procedure is used to derive micropolar, second gradient and classical models. The non-classical models have in the field equations non-standard kinematic and static descriptors accounting for the presence of the material internal structure. The differences in the material responses of the various continua are identified referring to their internal work formulas. For the reference material, it is shown that, unlike the Cauchy continuum, both micropolar and second gradient models are effective in the presence of load and geometrical singularities, which involve significant scale effects on the material response. On the other hand, the second gradient model, as well as the classical model, disregards the role of relative rotation between the local rigid rotation (macrorotation) and the microrotation, which is related to the presence of non-symmetric strains. This circumstance, significant in strongly anisotropic systems, allow us to point out the advantages of the micropolar modelling especially for orthotropic masonry assemblies made of elements of any size. These statements are discussed by means of selected numerical examples of masonry panels differing in size, shape and arrangement, under shear loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach J., Altenbach H., Emereyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Article  MATH  Google Scholar 

  2. Altenbach, H., Maugin, G.A., Erofeev, V. (eds): Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  3. Altenbach, H., Forest, S., Krivtsov, A. (eds): Generalized Continua as Models for Materials, Advanced Structured Materials, vol. 22. Springer, Berlin (2013)

    Google Scholar 

  4. Altenbach, H., Eremeyev, V.A. (eds): Generalized Continua From the Theory to Engineering Applications, CISM Courses and Lectures, vol. 541. Springer, Udine (2013)

    Google Scholar 

  5. Bacigalupo A., Gambarotta L.: Non-local computational homogenization of periodic masonry. Int. J. Multiscale Comput. Eng. 9(5), 565–578 (2011)

    Article  Google Scholar 

  6. Baggio C., Trovalusci P.: Limit analysis for no-tension and frictional three-dimensional discrete systems. Mech. Struct. Mach. 26(3), 287–304 (1998)

    Article  Google Scholar 

  7. Baggio C., Trovalusci P.: Collapse behaviour of three-dimensional brick–block systems using non linear programming. Struct. Eng. Mech. 10(2), 181–195 (2000)

    Article  Google Scholar 

  8. Besdo D.: Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech. 80, 25–45 (2010)

    Article  MATH  Google Scholar 

  9. Camborde F., Mariotti C., Donze C.: Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotech. 27, 225–247 (2000)

    Article  Google Scholar 

  10. Capecchi D., Ruta G., Trovalusci P.: From classical to Voigt’s molecular models in elasticity. Arch. Hist. Exact Sci. 64, 525–559 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Capecchi D., Ruta G., Trovalusci P.: Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch. Appl. Mech. 81(11), 1573–1584 (2011)

    Article  MATH  Google Scholar 

  12. Capriz G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  13. Capriz, G., Podio-Guidugli, P.: Whence the boundary conditions in modern continuum physics. In: Atti dei Convegni Lincei, vol. 210, pp. 19–42, Roma (2004)

  14. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  15. De Bellis M.L., Addessi D.: A Cosserat based multiscale model for masonry structures. Int. J. Multiscale Comput. Eng. 9(5), 543–564 (2011)

    Article  Google Scholar 

  16. Del Piero G.: On the method of virtual power in continuum mechanics. J. Mech. Mater. Struct. 4(2), 281–292 (2009)

    Article  MathSciNet  Google Scholar 

  17. Del Piero G.: On the method of virtual power in the mechanics of non-classical continua. In: Trovalusci, P., Sadowski, T. (eds.) Multiscale Modelling of Complex Materials, CISM Courses and Lectures, vol. 403, Springer, Berlin (in press)

  18. Devincre B., Roberts S.G.: Three-dimensional simulation of dislocation–crack interactions in bcc metals at the mesoscopic scale. Acta Materialia 44, 2891–2900 (1996)

    Article  Google Scholar 

  19. Di Carlo, A.: A non-standard format for continuum mechanics. In: Batra, C., Beatty, M.F. (eds.) Contemporary Research in the Mechanics and Mathematics of Materials, chapter A, pp. 92–104. CIMNE, Barcelona (1996)

  20. Dos Reis F., Ganghoffer J.F.: Construction of micropolar continua from the homogenization of repetitive planar lattices. In: Altembach, H., Maugin, G.A., Eerofer, V. (eds) Mechanics of Generalized Continua, pp. 193–217. Springer, Berlin (2011)

    Chapter  Google Scholar 

  21. Ericksen J.L.: Special Topics in Elastostatics. In: Yih, C.-S. (eds) Advances in Applied Mechanics, vol. 17, pp. 189–241. Academic Press, New York (1977)

    Chapter  Google Scholar 

  22. Ericksen J.L.: The Cauchy and Born hypotheses for crystals. In: Gurtin, M. (eds) Phase Transformations and Material Instabilities in Solids, pp. 61–76. Academic Press, New York (1984)

    Google Scholar 

  23. Eringen A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  24. Fago M., Hayes R.L., Carter E.A., Ortiz M.: Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2005)

    Google Scholar 

  25. Ferris M., Tin-Loy F.: Limit analysis of frictional block assemblies as a mathematical program with complementary constraints. Int. J. Mech. Sci. 43, 209–224 (2001)

    Article  MATH  Google Scholar 

  26. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  28. Forest S., Trinh D.K.: Generalised continua and the mechanics of heterogeneous material. Zeitschrift für Angewandte Mathematik und Mechanik 91, 90–109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Forest S., Dendievel R., Canova G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 7, 829–840 (1999)

    Article  Google Scholar 

  30. Fried E., Gurtin M.E.: Tractions, balances and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. 182, 513–554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Goddard J.D.: A general micromorphic theory of kinematics and stress in granular media. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powder and Grains, vol. 1, pp. 129–134. Taylor and Francis, London (2005)

    Google Scholar 

  33. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48-51), 5525–5550 (2004)

    Article  MATH  Google Scholar 

  34. Kunin I.A.: Elastic Media with Microstructure-I, One-Dimensional Models. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  35. Kunin I.A.: Elastic Media with Microstructure-II, Three-Dimensional Models. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  36. Li X., Liu Q.: A version of Hill’s lemma for Cosserat continuum. Acta Mechanica Sinica 25, 499–506 (2009)

    Article  MATH  Google Scholar 

  37. Liu W.K., Karpov E.G., Park H.S.: Nano Mechanics and Materials. Theory, Multiscale Methods and Applications. Wiley, London (2006)

    Book  Google Scholar 

  38. Livesley R.K.: Limit analysis of structures formed from rigid blocks. Int. J. Numer. Methods Eng. 12(12), 1853–1871 (1978)

    Article  MATH  Google Scholar 

  39. Maugin, G.A., Metrikine, A.V. (eds): Mechanics of Generalized Continua: One Hundred Years After Cosserat, Advances in Mechanics and Mathematics, vol. 21. Springer Science+Business Media, New York (2010)

    Google Scholar 

  40. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Google Scholar 

  41. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  42. Mühlhaus H.-B.: Application of Cosserat theory in numerical solution of limit load problems. Arch. Appl. Mech. 59, 124–137 (1989)

    Google Scholar 

  43. Mühlhaus, H.-B. (eds): Continuous Models for Materials with Microstructure. Wiley, Chichester (1995)

    Google Scholar 

  44. Nowacki W.: Theory of Micropolar Elasticity, CISM Courses and Lectures. Springer, Wien (1970)

    Google Scholar 

  45. Ortiz M., Phillips R.: Nanomechanics of defect in solids. In: van der Giessen, E., Wu, T.Y. (eds) Advances in Applied Mechanics, vol. 36, pp. 1–73. Academic Press, San Diego (1999)

    Google Scholar 

  46. Ostoja-Starzewski M., Boccara S.D., Jasiuk I.: Couple-stress moduli and characteristic length of a two-phase composite. Mech. Res. Commun. 26(4), 387–396 (1999)

    Article  MATH  Google Scholar 

  47. Ostoja-Starzewski M.: Macrohomogeneity condition in dynamics of micropolar media. Arch. Appl. Mech. 81, 899–906 (2011)

    Article  MATH  Google Scholar 

  48. Palla P., Ippolito M., Giordano S., Mattoni A., Colombo L.: Atomistic approach to nanomechanics: concepts, methods, and (some) applications. In: Pugno, N. (eds) The Nanomechanics in Italy, pp. 75–103. Transworld Research Network, Kerala (2007)

    Google Scholar 

  49. Pau A., Trovalusci P.: Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mechanica 223(7), 1455–1471 (2011)

    Article  Google Scholar 

  50. Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22(3), 163–176 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Podio-Guidugli P., Vianello V.: The representation problem of constrained linear elasticity. J. Elast. 28, 271–276 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  52. Pyrz R., Bochenek B.: Discrete-continuum transition at interfaces of nanocomposites. Bull. Pol. Acad. Sci. 55(2), 251–260 (2007)

    MATH  Google Scholar 

  53. Rapaport D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  54. Sansalone V., Trovalusci P., Cleri F.: Multiscale modelling of materials by a multifield approach: microscopic stress and strain distribution in fiber–matrix composites. Acta Materialia 54(13), 3485–3492 (2007)

    Article  Google Scholar 

  55. Stefanou I., Sulem J., Vardoulakis I.: Homogenization of interlocking masonry structures using a generalized differential expansion technique. Int. J. Solids Struct. 47, 1522–1536 (2010)

    Article  MATH  Google Scholar 

  56. Steinmann P., Ricker S., Aifantis E.: Unconstrained and Cauchy–Born-constrained atomistic systems: deformational and configurational mechanics. Arch. Appl. Mech. 81, 669–684 (2011)

    Article  MATH  Google Scholar 

  57. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  58. Toupin R.A.: Theory of elasticity with couple-stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  59. Trinh D.K., Jänicke R., Auffray N., Diebels S., Forest S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), 527–549 (2012)

    Article  Google Scholar 

  60. Trovalusci P., Masiani R.: Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 36(14), 2091–2108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  61. Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)

    Article  MATH  Google Scholar 

  62. Trovalusci P., Masiani R.: A multi-field model for blocky materials based on multiscale description. Int. J. Solids Struct. 42, 5778–5794 (2005)

    Article  MATH  Google Scholar 

  63. Trovalusci, P. (ed.): Multiscale mechanical modelling of complex materials. Int. J. Multiscale Comput. Eng. 5(2) (2007)

  64. Trovalusci P., Capecchi D., Ruta G.: Genesis of the multiscale approach for materials with microstructure. Arch. Appl. Mech. 79, 981–997 (2009)

    Article  MATH  Google Scholar 

  65. Trovalusci P., Varano V., Rega G.: A generalized continuum formulation for composite materials and wave propagation in a microcracked bar. J. Appl. Mech. 77(6), 1–28 (2010)

    Article  Google Scholar 

  66. Trovalusci P., Varano V.: Multifield continuum simulations for damaged materials: a bar with voids. Int. J. Multiscale Comput. Eng. 9(5), 599–608 (2011)

    Article  Google Scholar 

  67. Trovalusci, P., Ostoja-Starzewski, M. (eds.): Multiscale mechanical modelling of complex materials 2. Int. J. Multiscale Comput. Eng. 9(5) (2011)

  68. Trovalusci, P., Schrefler, B. (eds.): Multiscale mechanical modelling of complex materials 3. Int. J. Multiscale Comput. Eng. 10(6) (2012)

  69. Trovalusci, P.: Molecular approaches for multifield continua: origins and actual developments with applications to fibre composites and masonry-like materials. In: Trovalusci, P., Sadowski, T. (eds.) Multiscale Modelling of Complex Materials, CISM Courses and Lectures, vol. 403. Springer, Berlin (in press)

  70. Voigt W.: Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig (1910)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Pau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovalusci, P., Pau, A. Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225, 157–177 (2014). https://doi.org/10.1007/s00707-013-0936-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0936-9

Keywords

Navigation