Skip to main content
Log in

Direct Monte Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A two-way coupled simulation technique for a dilute suspension of rigid fibers in turbulent flows is proposed. It is based on an Eulerian direct numerical simulation of the incompressible Navier–Stokes equations and a Lagrangian direct Monte Carlo simulation of the fiber orientational conformation. The numerical methods are explained in detail. The developed simulation tool is employed to study the turbulent drag reduction by rigid fibers in a fully developed channel flow at a nominal shear Reynolds number Re τ = 180. We use 1283 grid cells to resolve the Eulerian field and 6.55 × 107 Lagrangian particle clusters each of which containing 100 fibers to compute the fiber conformation. This results in a total number of 6.55 × 109 fibers. Turbulence statistics of the fibrous drag-reduced channel flow using a direct solver are reported for the first time. Previously reported features of a fibrous drag-reduced channel flow are confirmed by our simulation. We present the mean flow quantities. In particular, turbulence intensities are investigated by considering the probability density function of the fluctuating velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virk P.S.: Drag reduction fundamentals. AIChE J. 21, 625–656 (1975)

    Article  Google Scholar 

  2. Tabor M., de Gennes P.: A cascade theory of drag reduction. Europhys. Lett. 2, 519–522 (1986)

    Article  Google Scholar 

  3. de Gennes P.: Introduction to Polymer Dynamics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  4. Sreenivasan K., White C.: The onset of drag reduction by dilute polymer additives and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149–164 (2000)

    Article  MATH  Google Scholar 

  5. White C.M., Mungal M.G.: Mechanics and prediction of turbulent drag reduction with polymer additives. Ann. Rev. Fluid Mech. 40, 235–256 (2008)

    Article  MathSciNet  Google Scholar 

  6. Sureshkumar R., Beris A.N., Handler R.A.: Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743 (1997)

    Article  Google Scholar 

  7. Lumley J.L.: Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367–384 (1969)

    Article  Google Scholar 

  8. Seyer F., Metzner A.: Turbulence phenomena in drag reducing systems. AIChE J. 15, 426–434 (1969)

    Article  Google Scholar 

  9. L’vov V.S., Pomyalov A., Procaccia I., Tiberkevich V.: Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92, 244503–244504 (2004)

    Article  Google Scholar 

  10. De Angelis E., Casciola C.M., L’vov V.S., Pomyalov A., Procaccia I., Tiberkevich V.: Drag reduction by a linear viscosity profile. Phys. Rev. E 70, 055301 (2004)

    Article  Google Scholar 

  11. Paschkewitz J.S., Dubief Y., Dimitropoulos C.D., Shaqfeh E.S.G., Moin P.: Numerical simulation of turbulent drag reduction using rigid fibres. J. Fluid Mech. 518, 281–317 (2004)

    Article  MATH  Google Scholar 

  12. Paschkewitz J.S., Dubief Y., Shaqfeh E.S.G.: The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Phys. Fluids 17, 063102 (2005)

    Article  Google Scholar 

  13. Radin I., Zakin J., Patterson G.: Drag reduction in solid-fluid systems. AIChE J. 21, 358–371 (1975)

    Article  Google Scholar 

  14. Frattini P.L., Fuller G.G.: Rheo-optical studies of the effect of weak Brownian rotations in sheared suspensions. J. Fluid Mech. 168, 119–150 (1986)

    Article  Google Scholar 

  15. Sasaki S.: Drag reduction effect of rod-like polymer solutions. I. Influences of polymer concentration and rigidity of skeletal back bone. J. Phys. Soc. Jpn. 60, 868–878 (1991)

    Article  Google Scholar 

  16. Sasaki S.: Drag reduction effect of rod-like polymer solutions. II. Comparison between microgel and linear type polyions. J. Phys. Soc. Jpn. 60, 2613–2618 (1991)

    Article  Google Scholar 

  17. Paschkewitz J.S., Dimitropoulos C.D., Hou Y.X., Somandepalli V.S.R., Mungal M.G., Shaqfeh E.S.G., Moin P.: An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer. Phys. Fluids 17, 085101 (2005)

    Article  Google Scholar 

  18. Amarouchene Y., Bonn D., Kellay H., Lo T.-S., L’vov V.S., Procaccia I.: Reynolds number dependence of drag reduction by rodlike polymers. Phys. Fluids 20, 065108 (2008)

    Article  Google Scholar 

  19. den Toonder J.M.J., Hulsen M.A., Kuiken G.D.C., Nieuwstadt F.T.M.: Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. 337, 193–231 (1997)

    Article  Google Scholar 

  20. Manhart M.: Rheology of suspensions of rigid-rod like particles in turbulent channel flow. J. Non-Newton. Fluid Mech. 112, 269–293 (2003)

    Article  MATH  Google Scholar 

  21. Manhart M.: Visco-elastic behaviour of suspensions of rigid-rod like particles in turbulent channel flow. Eur. J. Mech. B-Fluids 23, 461–474 (2004)

    Article  MATH  Google Scholar 

  22. Manhart, M.: A coupled DNS/Monte Carlo solver for dilute suspensions of Brownian fibres in turbulent channel flow. In: Wagner, S., Hanke, W., Bode, A., Durst, F. (eds.) High Performance Computing in Science and Engineering, Munich 2004, pp. 119–131. Springer, Berlin (2005)

  23. Gillissen J.J.J., Boersma B.J., Mortensen P.H., Andersson H.I.: On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys. Fluids 19, 035102 (2007)

    Article  Google Scholar 

  24. Gillissen J.J.J., Boersma B.J., Mortensen P.H., Andersson H.I.: The stress generated by non-Brownian fibers in turbulent channel flow simulations. Phys. Fluids 19, 115107 (2007)

    Article  Google Scholar 

  25. Gillissen J.J.J., Boersma B.J., Mortensen P.H., Andersson H.I.: Fibre-induced drag reduction. J. Fluid Mech. 602, 209–218 (2008)

    Article  MATH  Google Scholar 

  26. Procaccia I., L’vov V.S., Benzi R.: Theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225–247 (2008)

    Article  Google Scholar 

  27. Benzi R., Ching E.S.C., De Angelis E., Procaccia I.: Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows. Phys. Rev. E 77, 046309 (2008)

    Article  Google Scholar 

  28. Fan F.-G., Ahmadi G.: Wall deposition of small ellipsoids from turbulent air flows—a Brownian dynamics simulation. J. Aerosol Sci. 31, 1205–1229 (2000)

    Article  Google Scholar 

  29. Zhang H., Ahmadi G., Fan F.-G., McLaughlin J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  30. Andersson H.I., Zhao L., Barri M.: Torque-coupling and particle-turbulence interactions. J. Fluid Mech. 696, 319–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stewart W.E., Sorensen J.P.: Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow. Trans. Soc. Rheol. 16, 1–13 (1972)

    Article  Google Scholar 

  32. Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  33. Öttinger H.: Stochastic Processes in Polymeric Fluids. Tools and Examples for Developing Simulation Algorithms. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  34. Somasi M., Khomami B., Woo N.J., Hur J.S., Shaqfeh E.S.G.: Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues. J. Non-Newton. Fluid Mech. 108, 227–255 (2002)

    Article  MATH  Google Scholar 

  35. Zhou Q., Akhavan R.: A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J. Non-Newton. Fluid Mech. 109, 115–155 (2003)

    Article  MATH  Google Scholar 

  36. Terrapon V.E., Dubief Y., Moin P., Shaqfeh E.S.G., Lele S.K.: Simulated polymer stretch in a turbulent flow using Brownian dynamics. J. Fluid Mech. 504, 61–71 (2004)

    Article  MATH  Google Scholar 

  37. Terrapon, V.: Lagrangian Simulations of Turbulent Drag Reduction by a Dilute Solution of Polymers in a Channel Flow. Ph.D. Dissertation, Stanford University (2005)

  38. Brenner H.: Rheology of a dilute suspension of axisymmetric Brownian particles. Int. J. Multiphase Flow 1, 195–341 (1974)

    Article  MATH  Google Scholar 

  39. Jeffery G.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922)

    Article  Google Scholar 

  40. Subramanian G., Koch D.L.: Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Clarendon, Oxford (1986)

    Google Scholar 

  42. Einstein A.: "Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 322, 549–560 (1905)

    Article  Google Scholar 

  43. Batchelor G.: The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chorin A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (ii). Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  46. Williamson J.H.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stone H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5, 530–558 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  48. Harlow F.H., Welch J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids. 8, 2182 (1965)

    Article  MATH  Google Scholar 

  49. Manhart M., Friedrich R.: DNS of a turbulent boundary layer with separation. Int. J. Heat Fluid Flow 23, 572–581 (2002)

    Article  Google Scholar 

  50. Hokpunna A., Manhart M.: Compact fourth-order finite volume method for numerical solutions of Navier–Stokes equations on staggered grids. J. Comput. Phys. 229, 7545–7570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yeung P., Pope S.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373–416 (1988)

    Article  MATH  Google Scholar 

  52. Balachandar S., Maxey M.R.: Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96–125 (1989)

    Article  MATH  Google Scholar 

  53. Kontomaris K., Hanratty T., McLaughlin J.: An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. J. Comput. Phys. 103, 231–242 (1992)

    Article  MATH  Google Scholar 

  54. Meyer D.W., Jenny P.: Conservative velocity interpolation for PDF methods. Proc. Appl. Math. Mech. 4, 466–467 (2004)

    Article  Google Scholar 

  55. Gobert, C.: Large Eddy Simulation of Particle-Laden Flow. Ph.D. Dissertation, Technische Universität München (2010)

  56. Manhart, M.: Rheology of Suspensions of Small Fibres in Turbulent Channel Flow. Part 1: Simple Steady Flows. Sonderforschungsbereich 438: TU-München, Universität Augsburg, SFB-438-0203 (2002)

  57. Moosaie A., Le Duc A., Manhart M.: Numerical simulation of flow-induced fiber orientation using normalization of second moment. J. Non-Newton. Fluid Mech. 165, 551–554 (2010)

    Article  MATH  Google Scholar 

  58. Okagawa A., Cox R., Mason S.: The kinetics of flowing dispersions. VI. Transient orientation and rheological phenomena of rods and discs in shear flow. J. Colloid Interface Sci. 45, 303–329 (1973)

    Article  Google Scholar 

  59. Moosaie, A., Le Duc, A., Manhart, M.: A priori analysis of a closure model using the reconstruction of the orientation distribution function in flow of fiber suspensions. Comput. Mech. (2011). doi:10.1007/s00466-011-0596-3

  60. Krylov, N.V.: Introduction to the Theory of Diffusion Processes. American Mathematical Society, Providence (1995)

  61. Gallez X., Halin P., Lielens G., Keunings R., Legat V.: The adaptive Lagrangian particle method for macroscopic and micromacro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Eng. 180, 345–364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Advani S.G., Tucker C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)

    Article  Google Scholar 

  63. Shaqfeh E.S.G., Fredrickson G.H.: The hydrodynamic stress in a suspension of rods. Phys. Fluids A 2, 7–24 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  64. Moosaie, A.: Direct Numerical Simulation of Turbulent Drag Reduction by Rigid Fiber Additives. Ph.D. thesis, Technische Universität München (2011)

  65. Jiménez J., Moin P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)

    Article  MATH  Google Scholar 

  66. Kim J., Moin P., Moser R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  67. Paschkewitz, J.S.: Turbulent Drag Reduction Using Microfibers. Ph.D. Dissertation, Stanford University (2004)

  68. Pope S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  69. Millikan, C.M.: A critical discussion of turbulent flows in channel and circular pipes. In: Proceedings of the 5th International Congress of Applied Mechanics, pp. 386–392 (1938)

  70. George W.K., Castillo L.: Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689–729 (1997)

    Article  Google Scholar 

  71. Barenblatt G.I., Chorin A.J., Prostokishin V.M.: Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev. 50, 413–429 (1997)

    Article  Google Scholar 

  72. Moser R.D., Kim J., Mansour N.N.: Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  73. Dubief Y., White C.M., Terrapon V.E., Shaqfeh E.S.G., Moin P., Lele S.K.: On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271–280 (2004)

    Article  MATH  Google Scholar 

  74. Virk P.S.: An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. J. Fluid Mech. 45, 417–440 (1971)

    Article  Google Scholar 

  75. Benzi R., De~Angelis E., L’vov V.S., Procaccia I., Tiberkevich V.: Maximum drag reduction asymptotes and the cross-over to the Newtonian plug. J. Fluid Mech. 551, 185–195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. Moosaie A., Manhart M.: An algebraic closure for the DNS of fiber-induced turbulent drag reduction in a channel flow. J. Non-Newton. Fluid Mech. 166, 19–20 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosaie, A., Manhart, M. Direct Monte Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow. Acta Mech 224, 2385–2413 (2013). https://doi.org/10.1007/s00707-013-0919-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0919-x

Keywords

Navigation