Skip to main content

Advertisement

Log in

Norovirus strains in patients with acute gastroenteritis in rural and low-income urban areas in northern Brazil

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

From 2010-2016, a total of 251 stool samples were screened for norovirus using next-generation sequencing (NGS) followed by phylogenetic analysis to investigate the genotypic diversity of noroviruses in rural and low-income urban areas in northern Brazil. Norovirus infection was detected in 19.9% (50/251) of the samples. Eight different genotypes were identified: GII.4_Sydney[P31] (64%, 32/50), GII.6[P7] (14%, 7/50), GII.17[P17] (6%, 3/50), GII.1[P33] (6%, 3/50), GII.3[P16] (4%, 2/50), GII.2[P16] (2%, 1/50), GII.2[P2] (2%, 1/50), and GII.4_New Orleans[P4] (2%, 1/50). Distinct GII.6[P7] variants were recognized, indicating the presence of different co-circulating strains. Elucidating norovirus genetic diversity will improve our understanding of their potential health burden, in particular for the GII.4_Sydney[P31] variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Atmar RL (2010) Noroviruses—state of the art. Food Environ Virol 2(3):117–126. https://doi.org/10.1007/s12560-010-9038-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glass PJ, White LJ, Ball JM et al (2000) Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol 74(14):6581–6591. https://doi.org/10.1128/jvi.74.14.6581-6591.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kroneman A, Vennema H, Deforche K et al (2011) An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol 51(2):121–125. https://doi.org/10.1016/j.jcv.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  4. Chhabra P, de Graaf M, Parra GI et al (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100(10):1393–1406. https://doi.org/10.1099/jgv.0.001318. Corrigendum: Updated classification of norovirus genogroups and genotypes. J Gen Virol 2020;101(8):893. https://doi.org/10.1099/jgv.0.001475

  5. Matsushima Y, Ishikawa M, Shimizu T et al (2015) Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. Euro Surveill 20(26):21173. https://doi.org/10.2807/1560-7917.es2015.20.26.21173

    Article  PubMed  Google Scholar 

  6. Siqueira JAM, Bandeira RDS, Oliveira DS et al (2017) Genotype diversity and molecular evolution of noroviruses: A 30-year (1982–2011) comprehensive study with children from Northern Brazil. PLoS ONE 12(6):e0178909. https://doi.org/10.1371/journal.pone.0178909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parra GI, Green KY (2015) Genome of emerging norovirus GII.17, United States, 2014. Emerg Infect Dis 21(8):1477–1479. https://doi.org/10.3201/eid2108.150652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eden JS, Hewitt J, Lim KL et al (2014) The emergence and evolution of the novel epidemic norovirus GII.4 variant Sydney 2012. Virology 450–451:106–113. https://doi.org/10.1016/j.virol.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  9. Hoa Tran TN, Trainor E, Nakagomi T et al (2013) Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J Clin Virol 56(3):185–193. https://doi.org/10.1016/j.jcv.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  10. Parra GI, Squires RB, Karangwa CK et al (2017) Static and evolving norovirus genotypes: implications for epidemiology and immunity. PLoS Pathog. 13(1):e1006136. https://doi.org/10.1371/journal.ppat.1006136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Beek J, Ambert-Balay K, Botteldoorn N et al (2013) Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Euro Surveill 18(1):8–9

    PubMed  Google Scholar 

  12. Lu J, Sun L, Fang L et al (2015) Gastroenteritis outbreaks caused by norovirus GII.17, Guangdong Province, China, 2014–2015. Emerg Infect Dis 21(7):1240–1242. https://doi.org/10.3201/eid2107.150226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrade JSR, Fumian TM, Leite JPG et al (2017) Detection and molecular characterization of emergent GII.P17/GII.17 Norovirus in Brazil, 2015. Infect Genet Evol 51:28–32. https://doi.org/10.1016/j.meegid.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  14. Lun JH, Hewitt J, Sitabkhan A et al (2018) Emerging recombinant noroviruses identified by clinical and waste water screening. Emerg Microbes Infect 7(1):50. https://doi.org/10.1038/s41426-018-0047-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medici MC, Tummolo F, Calderaro A et al (2015) Identification of the novel Kawasaki 2014 GII.17 human norovirus strain in Italy, 2015. Euro Surveill 20(35):30010. https://doi.org/10.2807/1560-7917.ES.2015.20.35.30010

    Article  PubMed  Google Scholar 

  16. Mattison CP, Cardemil CV, Hall AJ (2018) Progress on norovirus vaccine research: public health considerations and future directions. Expert Rev Vaccines 17(9):773–784. https://doi.org/10.1080/14760584.2018.1510327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barreira DMPG, Fumian TM, Tonini MAL et al (2017) Detection and molecular characterization of the novel recombinant norovirus GII.P16-GII.4 Sydney in southeastern Brazil in 2016. PLoS ONE 12(12):e0189504. https://doi.org/10.1371/journal.pone.0189504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fioretti JM, Fumian TM, Rocha MS et al (2018) Surveillance of noroviruses in Rio De Janeiro, Brazil: occurrence of new GIV genotype in clinical and wastewater samples. Food Environ Virol 10(1):1–6. https://doi.org/10.1007/s12560-017-9308-2

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez JM, Silva LD, Junior ECS et al (2018) Molecular epidemiology and temporal evolution of norovirus associated with acute gastroenteritis in Amazonas state, Brazil. BMC Infect Dis. 18(1):147. https://doi.org/10.1186/s12879-018-3068-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gondim RDG, Pankov RC, Prata MMG et al (2018) Genetic diversity of norovirus infections, coinfections, and undernutrition in children from Brazilian Semiarid Region. J Pediatr Gastroenterol Nutr 67(6):e117–e122. https://doi.org/10.1097/MPG.0000000000002085

    Article  PubMed  Google Scholar 

  21. Cantelli CP, da Silva MFM, Fumian TM et al (2019) High genetic diversity of noroviruses in children from a community-based study in Rio de Janeiro, Brazil, 2014–2018. Arch Virol. 164(5):1427–1432. https://doi.org/10.1007/s00705-019-04195-z

    Article  CAS  PubMed  Google Scholar 

  22. Dábilla N, Almeida TNV, Franco FC et al (2019) Recombinant noroviruses detected in Mid-West region of Brazil in two different periods 2009–2011 and 2014–2015: atypical breakpoints of recombination and detection of distinct GII.P7-GII.6 lineages. Infect Genet Evol 68:47–53. https://doi.org/10.1016/j.meegid.2018.12.007

    Article  PubMed  Google Scholar 

  23. Tahmasebi R, Luchs A, Tardy K, Hefford PM, Tinker RJ, Eilami O et al (2020) Viral gastroenteritis in Tocantins, Brazil: characterizing the diversity of human adenovirus F through next-generation sequencing and bioinformatics. J Gen Virol. https://doi.org/10.1099/jgv.0.001500 ((epub ahead of print))

    Article  PubMed  Google Scholar 

  24. Watanabe ASA, Luchs A, Leal É et al (2018) Complete genome sequences of six human bocavirus strains from patients with acute gastroenteritis in the North Region of Brazil. Genome Announc 6(17):e00235-e318. https://doi.org/10.1128/genomeA.00235-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cilli A, Luchs A, Leal E et al (2019) Human sapovirus GI2 and GI3 from children with acute gastroenteritis in northern Brazil. Mem Inst Oswaldo Cruz 114:e180574. https://doi.org/10.1590/0074-02760180574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ribeiro GO, Luchs A, Milagres FAP et al (2018) Detection and characterization of enterovirus B73 from a child in Brazil. Viruses 11(1):16. https://doi.org/10.3390/v11010016

    Article  CAS  PubMed Central  Google Scholar 

  27. Luchs A, Leal E, Tardy K et al (2019) The rare enterovirus c99 and echovirus 29 strains in Brazil: potential risks associated to silent circulation. Mem Inst Oswaldo Cruz 114:e190160. https://doi.org/10.1590/0074-02760190160

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rosa UA, Ribeiro GO, Villanova F et al (2019) First identification of mammalian orthoreovirus type 3 by gut virome analysis in diarrheic child in Brazil. Sci Rep 9(1):18599. https://doi.org/10.1038/s41598-019-55216-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. da Costa AC, Luchs A, Milagres FAP et al (2018) Near full length genome of a recombinant (E/D) cosavirus strain from a rural area in the central region of Brazil. Sci Rep 8(1):12304. https://doi.org/10.1038/s41598-018-30214-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. da Costa AC, Luchs A, Milagres FAP et al (2018) Recombination located over 2A–2B junction ribosome frameshifting region of saffold cardiovirus. Viruses 10(10):520. https://doi.org/10.3390/v10100520

    Article  CAS  PubMed Central  Google Scholar 

  31. Luchs A, Leal E, Komninakis SV et al (2018) Wuhan large pig roundworm virus identified in human feces in Brazil. Virus Genes 54(3):470–473. https://doi.org/10.1007/s11262-018-1557-0

    Article  CAS  PubMed  Google Scholar 

  32. Leal É, Luchs A, Milagres FAP et al (2019) Recombinant strains of human parechovirus in rural areas in the North of Brazil. Viruses 11(6):488. https://doi.org/10.3390/v11060488

    Article  CAS  PubMed Central  Google Scholar 

  33. da Costa AC, Leal E, Gill D et al (2019) Discovery of Cucumis melo endornavirus by deep sequencing of human stool samples in Brazil. Virus Genes 55(3):332–338. https://doi.org/10.1007/s11262-019-01648-0

    Article  CAS  PubMed  Google Scholar 

  34. Tahmasebi R, Costa ACD, Tardy K et al (2020) Genomic analyses of potential novel recombinant human adenovirus C in Brazil. Viruses 12(5):508. https://doi.org/10.3390/v12050508

    Article  CAS  PubMed Central  Google Scholar 

  35. Li L, Deng X, Mee ET et al (2015) Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent. J Virol Methods 213:139–146. https://doi.org/10.1016/j.jviromet.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  36. Charlys da Costa A, Thézé J, Komninakis SCV et al (2017) Spread of Chikungunya Virus East/Central/South African Genotype in Northeast Brazil. Emerg Infect Dis 23(10):1742–1744. https://doi.org/10.3201/eid2310.170307

    Article  PubMed  PubMed Central  Google Scholar 

  37. Deng X, Naccache SN, Ng T et al (2015) An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res 43(7):e46. https://doi.org/10.1093/nar/gkv002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altan E, Delaney MA, Colegrove KM et al (2020) Complex virome in a mesenteric lymph node from a Californian Sea Lion (Zalophus californianus) with polyserositis and steatitis. Viruses 12(8):E793. https://doi.org/10.3390/v12080793

    Article  CAS  PubMed  Google Scholar 

  39. Ng TF, Marine R, Wang C et al (2012) High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 86(22):12161–12175. https://doi.org/10.1128/JVI.00869-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  41. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu JG, Ai J, Zhang J et al (2016) Molecular epidemiology of genogroup II norovirus infection among hospitalized children with acute gastroenteritis in Suzhou (Jiangsu, China) from 2010 to 2013. J Med Virol 88(6):954–960. https://doi.org/10.1002/jmv.24429

    Article  PubMed  Google Scholar 

  43. Xue Y, Pan H, Hu J et al (2015) Epidemiology of norovirus infections among diarrhea outpatients in a diarrhea surveillance system in Shanghai, China: a cross-sectional study. BMC Infect Dis 15:183. https://doi.org/10.1186/s12879-015-0922-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim YE, Song M, Lee J et al (2018) Phylogenetic characterization of norovirus strains detected from sporadic gastroenteritis in Seoul during 2014–2016. Gut Pathog 10:36. https://doi.org/10.1186/s13099-018-0263-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ouédraogo N, Kaplon J, Bonkoungou IJ et al (2016) Prevalence and genetic diversity of enteric viruses in children with diarrhea in Ouagadougou, Burkina Faso. PLoS ONE 11(4):e0153652. https://doi.org/10.1371/journal.pone.0153652

    Article  PubMed  PubMed Central  Google Scholar 

  46. Diez-Valcarce M, Lopez MR, Lopez B et al (2019) Prevalence and genetic diversity of viral gastroenteritis viruses in children younger than 5 years of age in Guatemala, 2014–2015. J Clin Virol 114:6–11. https://doi.org/10.1016/j.jcv.2019.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gupta S, Krishnan A, Sharma S et al (2018) Changing pattern of prevalence, genetic diversity, and mixed infections of viruses associated with acute gastroenteritis in pediatric patients in New Delhi, India. J Med Virol 90(3):469–476. https://doi.org/10.1002/jmv.24980

    Article  CAS  PubMed  Google Scholar 

  48. Reymão TKA, Fumian TM, Justino MCA et al (2018) Norovirus RNA in serum associated with increased fecal viral load in children: Detection, quantification and molecular analysis. PLoS ONE 13(7):e0199763. https://doi.org/10.1371/journal.pone.0199763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paula FL, Sardi SI, Tigre DM et al (2018) Acute gastroenteritis associated with norovirus GII.4 variants. Arq Gastroenterol 55(3):264–266. https://doi.org/10.1590/S0004-2803.201800000-67

    Article  PubMed  Google Scholar 

  50. Gray JJ, Kohli E, Ruggeri FM et al (2007) European multicenter evaluation of commercial enzyme immunoassays for detecting norovirus antigen in fecal samples. Clin Vaccine Immunol 14(10):1349–1355. https://doi.org/10.1128/CVI.00214-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moyo S, Hanevik K, Blomberg B et al (2014) Genetic diversity of norovirus in hospitalised diarrhoeic children and asymptomatic controls in Dar es Salaam, Tanzania. Infect Genet Evol 26:340–347. https://doi.org/10.1016/j.meegid.2014.06.013

    Article  PubMed  Google Scholar 

  52. Mesquita JR, Nascimento MS (2014) Norovirus GII.4 antibodies in the Portuguese population. J Infect Dev Ctries 8(9):1201–1204. https://doi.org/10.3855/jidc.4616

    Article  PubMed  Google Scholar 

  53. Abugalia M, Cuevas L, Kirby A et al (2011) Clinical features and molecular epidemiology of rotavirus and norovirus infections in Libyan children. J Med Virol 83(10):1849–1856. https://doi.org/10.1002/jmv.22141

    Article  PubMed  Google Scholar 

  54. Mathew S, Alansari K, Smatti M et al (2019) Epidemiological, molecular, and clinical features of norovirus infections among pediatric patients in Qatar. Viruses 11(5):400. https://doi.org/10.3390/v11050400

    Article  CAS  PubMed Central  Google Scholar 

  55. Eftim SE, Hong T, Soller J et al (2017) Occurrence of norovirus in raw sewage—a systematic literature review and meta-analysis. Water Res 111:366–374. https://doi.org/10.1016/j.watres.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  56. Fumian TM, Fioretti JM, Lun JH et al (2019) Detection of norovirus epidemic genotypes in raw sewage using next generation sequencing. Environ Int 123:282–291. https://doi.org/10.1016/j.envint.2018.11.054

    Article  CAS  PubMed  Google Scholar 

  57. Mans J, Murray TY, Taylor MB (2014) Novel norovirus recombinants detected in South Africa. Virol J 11:168. https://doi.org/10.1186/1743-422X-11-168

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bruggink LD, Moselen JM, Marshall JA (2016) The comparative molecular epidemiology of GII.P7_GII.6 and GII.P7_GII.7 norovirus outbreaks in Victoria, Australia, 2012–2014. Intervirology 59(1):60–65. https://doi.org/10.1159/000448100

    Article  CAS  PubMed  Google Scholar 

  59. Utsumi T, Lusida MI, Dinana Z et al (2017) Occurrence of norovirus infection in an asymptomatic population in Indonesia. Infect Genet Evol 55:1–7. https://doi.org/10.1016/j.meegid.2017.08.020

    Article  PubMed  Google Scholar 

  60. Volpini LPB, Barreira DMPG, Almeida PLDS et al (2020) An outbreak due to a norovirus GII.Pe-GII.4 Sydney_2012 recombinant in neonatal and pediatric intensive care units. J Infect Public Health 13(1):89–93. https://doi.org/10.1016/j.jiph.2019.06.012

    Article  PubMed  Google Scholar 

  61. Hernandez JDM, Silva LDD, Sousa Junior EC et al (2016) Analysis of uncommon norovirus recombinants from Manaus, Amazon region, Brazil: GII.P22/GII.5, GII.P7/GII.6 and GII.Pg/GII.1. Infect Genet Evol 39:365–371. https://doi.org/10.1016/j.meegid.2016.02.007

    Article  PubMed  Google Scholar 

  62. Cai H, Yu Y, Jin M et al (2017) Cloning, sequencing and characterization of the genome of a recombinant norovirus of the rare genotype GII.P7/GII.6 in China. Arch Virol 162(7):2053–2059. https://doi.org/10.1007/s00705-017-3325-1

    Article  CAS  PubMed  Google Scholar 

  63. Dong X, Qin M, Wang ZE et al (2019) Should we pay attention to recombinant norovirus strain GII.P7/GII.6? J Infect Public Health 12(3):403–409. https://doi.org/10.1016/j.jiph.2018.12.007

    Article  PubMed  Google Scholar 

  64. Fajardo Á, Tort FL, Victoria M et al (2014) Phylogenetic analyses of Norovirus strains detected in Uruguay reveal the circulation of the novel GII.P7/GII.6 recombinant variant. Infect Genet Evol 28:328–332. https://doi.org/10.1016/j.meegid.2014.10.026

    Article  PubMed  Google Scholar 

  65. Puustinen L, Blazevic V, Salminen M et al (2011) Noroviruses as a major cause of acute gastroenteritis in children in Finland, 2009–2010. Scand J Infect Dis 43(10):804–808. https://doi.org/10.3109/00365548.2011.588610

    Article  PubMed  Google Scholar 

  66. Fumian TM, Andrade JSR, Leite JP et al (2016) Norovirus recombinant strains isolated from gastroenteritis outbreaks in Southern Brazil, 2004–2011. PLoS ONE 11(4):e0145391. https://doi.org/10.1371/journal.pone.0145391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chan MCW, Hu Y, Chen H et al (2017) Global spread of Norovirus GII.17 Kawasaki 308, 2014–2016. Emerg Infect Dis 23(8):1359–1354. https://doi.org/10.3201/eid2308.161138

    Article  PubMed  Google Scholar 

  68. Degiuseppe JI, Gomes KA, Hadad MF et al (2017) Detection of novel GII.17 norovirus in Argentina, 2015. Infect Genet Evol 47:121–124. https://doi.org/10.1016/j.meegid.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  69. Silva LD, Bandeira RD, Junior EC et al (2017) Detection and genetic characterization of the emergent GII.17_2014 norovirus genotype among children with gastroenteritis from Northern Brazil. Infect Genet Evol 48:1–3. https://doi.org/10.1016/j.meegid.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  70. Medici MC, Tummolo F, Martella V et al (2014) Novel recombinant GII.P16_GII.13 and GII.P16_GII.3 norovirus strains in Italy. Virus Res 188:142–145. https://doi.org/10.1016/j.virusres.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  71. Medici MC, Tummolo F, Martella V et al (2018) Emergence of novel recombinant GII.P16_GII.2 and GII.P16_GII.4 Sydney 2012 norovirus strains in Italy, winter 2016/2017. New Microbiol 41(1):71–72

    PubMed  Google Scholar 

  72. Pabbaraju K, Wong AA, Tipples GA et al (2019) Emergence of a novel recombinant norovirus GII.P16-GII.12 strain causing gastroenteritis, Alberta, Canada. Emerg Infect Dis 25(8):1556–1559. https://doi.org/10.3201/eid2508.190059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hoffmann D, Mauroy A, Seebach J et al (2013) New norovirus classified as a recombinant GII.g/GII.1 causes an extended foodborne outbreak at a university hospital in Munich. J Clin Virol 58(1):24–30. https://doi.org/10.1016/j.jcv.2013.06.018

    Article  PubMed  Google Scholar 

  74. Nahar S, Afrad MH, Begum N et al (2013) High prevalence of noroviruses among hospitalized diarrheal patients in Bangladesh, 2011. J Infect Dev Ctries 7(11):892–896. https://doi.org/10.3855/jidc.2944

    Article  PubMed  Google Scholar 

  75. Arana A, Cilla G, Montes M et al (2014) Genotypes, recombinant forms, and variants of norovirus GII.4 in Gipuzkoa (Basque Country, Spain), 2009–2012. PLoS ONE 9(6):e98875. https://doi.org/10.1371/journal.pone.0098875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iritani N, Kaida A, Abe N et al (2012) Increase of GII.2 norovirus infections during the 2009–2010 season in Osaka City, Japan. J Med Virol. 84(3):517–525. https://doi.org/10.1002/jmv.23211

    Article  PubMed  Google Scholar 

  77. Wang YH, Zhou DJ, Zhou X et al (2012) Molecular epidemiology of noroviruses in children and adults with acute gastroenteritis in Wuhan, China, 2007–2010. Arch Virol. 157(12):2417–2424. https://doi.org/10.1007/s00705-012-1437-1

    Article  CAS  PubMed  Google Scholar 

  78. Bidalot M, Théry L, Kaplon J et al (2017) Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII.2, France, winter 2016 to 2017. Euro Surveill 22(15):30508. https://doi.org/10.2807/1560-7917.ES.2017.22.15.30508

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ao Y, Xie X, Dong X et al (2019) Genetic analysis of an emerging GII.P2-GII.2 norovirus associated with a 2016 outbreak of acute gastroenteritis in China. Virol Sin 34(1):111–114. https://doi.org/10.1007/s12250-019-00084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu LT, Kuo TY, Wu CY et al (2017) Recombinant GII.P16-GII.2 Norovirus, Taiwan, 2016. Emerg Infect Dis 23(7):1180–1183. https://doi.org/10.3201/eid2307.170212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Niendorf S, Jacobsen S, Faber M et al (2017) Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016. Euro Surveill 22(4):30447. https://doi.org/10.2807/1560-7917.ES.2017.22.4.30447

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cheung SKC, Kwok K, Zhang LY et al (2019) Higher viral load of emerging norovirus GII.P16-GII.2 than pandemic GII.4 and epidemic GII.17, Hong Kong, China. Emerg Infect Dis 25(1):119–122. https://doi.org/10.3201/eid2501.180395

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mizukoshi F, Nagasawa K, Doan YH et al (2017) Molecular evolution of the RNA-dependent RNA polymerase and capsid genes of human norovirus genotype GII.2 in Japan during 2004–2015. Front Microbiol 8:705. https://doi.org/10.3389/fmicb.2017.00705

    Article  PubMed  PubMed Central  Google Scholar 

  84. Silva-Sales M, Leal E, Milagres FAP, Brustulin R, Morais VDS, Marcatti R, Araújo ELL, Witkin SS, Deng X, Sabino EC, Delwart E, Luchs A, Costa ACD (2020 Dec) Genomic constellation of human Rotavirus A strains identified in Northern Brazil: a 6-year follow-up (2010–2016). Rev Inst Med Trop Sao Paulo. 18(62):e98. https://doi.org/10.1590/S1678-9946202062098

    Article  Google Scholar 

Download references

Acknowledgements

We thank Luciano Monteiro da Silva for administrative support. Our thanks also to the Coordenação Geral de Laboratórios de Saúde Pública do Departamento de Articulação Estratégica da Secretaria de Vigilância em Saúde do Ministério da Saúde (CGLAB/DAEVS/SVS-MS), MP Biomedicals Inc., and Zymo Research Corporation, for the donation of reagents.

Funding

This study was partially supported by FAPESP #2016/01735-2 and CNPq #400354/2016-0. Antônio Charlys da Costa is funded by FAPESP #2017/00021-9, Adriana Luchs is funded by FAPESP #2015/12944-9, Vanessa S. Morais is funded by FAPESP #2019/21706-5, and Elcio Leal is funded by CNPq #302677/2019-4.

Author information

Authors and Affiliations

Authors

Contributions

RJT, ACC, RT, ED, ECS, EL and AL conceived the study; RJT, ACC, EL and AL designed the study protocol; FAPM, RB and MART participated in the conduct of the study, collection and screening of the specimens; ACC, RT and VSM performed the deep-sequencing assays; ACC, XD, ED and EL analyzed the big data; RJT, ACC, RT, RPP, AJA, MSC, ELLA, MMG, ECS, EL and AL analyzed and interpreted the data; ED, ECS, EL and AL supervised the study; RJT, ACC, MSC, MMG, EL and AL drafted the manuscript; all authors critically revised the manuscript for intellectual content and approved the final version. ACC and AL are guarantors of the paper.

Corresponding authors

Correspondence to Antonio Charlys da Costa or Adriana Luchs.

Ethics declarations

Conflict of interest

None.

Ethical approval

Previous Ethics Committee approval was granted by the Faculdade de Medicina da Universidade de São Paulo (CAAE: 53153916.7.0000.0065) and the Centro Universitário Luterano de Palmas - ULBRA (CAAE 53153916.7.3007.5516).

Additional information

Handling Editor: Reimar Johne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 401 KB)

Supplementary file2 (DOC 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinker, R.J., da Costa, A.C., Tahmasebi, R. et al. Norovirus strains in patients with acute gastroenteritis in rural and low-income urban areas in northern Brazil. Arch Virol 166, 905–913 (2021). https://doi.org/10.1007/s00705-020-04944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04944-5

Navigation