Skip to main content
Log in

Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

A Correction to this article was published on 09 November 2017

This article has been updated

Abstract

Here we present the third release of the plant rDNA database (March 2017), an open access online resource with information on numbers, locations and structure of 5S and 18S-5.8S-26S (35S) ribosomal DNA (rDNA) (www.plantrdnadatabase.com). Data are now available for 2148 species (3783 entries), extracted from 785 papers published until the end of 2016. This means an expansion of 33.5% in terms of new species and 13% in new publications consulted. We appreciate an increased interest on rDNA loci research in recent years, since 10.78% of all data available were published only in 2016. The database has been expanded to include information on telomere composition and on species whose genome has been fully sequenced up to date. Telomere sequence is only known with certainty for 9.60% of species in the database and for 36.79% at the genus level, indicating, potentially, that the consensus plant telomere (Arabidopsis-type) might not be as extended as previously thought. We have also introduced the taxonomic category order as an additional option for data browsing. Similarly, we have included a new category to indicate the hybrid status of taxa. In addition, we upgraded and/or proofread tabs and links and slightly modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 09 November 2017

    Unfortunately in page 116, second paragraph, the sentence that starts with “Other exceptions include…” was incorrectly published. The complete correct sentence is given below.

References

  • Adachi J, Watanabe K, Fukui K, Ohmido N, Kosuge K (1997) Chromosomal location and reorganization of the 45S and 5S rDNA in the Brachyscome lineariloba complex (Asteraceae). J Pl Res 110:371–377. doi:10.1007/BF02524936

    Article  CAS  Google Scholar 

  • Adams SP, Hartman TPV, Lim KY, Chase MW, Bennett MD, Leitch IJ, Leitch AR (2001) Loss and recovery of Arabidopsis–type telomere repeat sequences 5′–(TTTAGGG) n–3′ in the evolution of a major radiation of flowering plants. Proc Roy Soc London, Ser B, Biol Sci 268:1541–1546. doi:10.1098/rspb.2001.1726

    Article  CAS  Google Scholar 

  • Bedini G, Pierini B, Roma-Marzio F, Caparelli KF, Bonari G, Dolci D, Gestri G, D’Antraccoli M, Peruzzi L (2016) Wikiplantbase#Toscana, breaking the dormancy of floristic data. Pl Biosyst 150:601–610. doi:10.1080/11263504.2015.1057266

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012). Available at: http://www.kew.org/cvalues/. Accessed 30 Jan 2017

  • Bolsheva NL, Dyachenko OV, Samatadze TE, Rachinskaya OA, Zakharchenko NS, Shevchuk TV, Amosova AV, Muravenko O, Zelenin AV (2016) Karyotype of Mesembryanthemum crystallinum (Aizoaceae) studied by chromosome banding, FISH with rDNA probes and immunofluorescence detection of DNA methylation. Pl Biosyst 150:916–922. doi:10.1080/11263504.2014.991360

    Article  Google Scholar 

  • Cohen S, Agmon N, Sobol O, Segal D (2010) Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA 1:11. doi:10.1186/1759-8753-1-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Drouin G, De Sa MM (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Molec Biol Evol 12:481–493. doi:10.1186/1471-2148-11-151

    CAS  PubMed  Google Scholar 

  • Dvořáčkova M, Fotjová M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Pl J 83:18–37. doi:10.1111/tpj.12822

    Article  Google Scholar 

  • Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Fajkus J (2016) Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Pl J 85:337–347. doi:10.1111/tpj.13115

    Article  CAS  Google Scholar 

  • Fulcher N, Teubenbacher A, Kerdaffrec E, Farlow A, Nordborg M, Riha K (2015) Genetic architecture of natural variation of telomere length in Arabidopsis thaliana. Genetics 199(2):625–635. doi:10.1534/genetics.114.172163

    Article  PubMed  Google Scholar 

  • Galián JA, Rosato M, Rosselló JA (2012) Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108:640–646. doi:10.1038/hdy.2012.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia S, Kovařík A (2013) Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene rDNA organisation. Heredity 111:23–33. doi:10.1038/hdy.2013.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovařík A (2009) Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118:85–97. doi:10.1007/s00412-008-0179-z

    Article  CAS  PubMed  Google Scholar 

  • Garcia S, Panero JL, Siroky J, Kovařík A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes rDNA in the Asteraceae family. BMC Pl Biol 10:176. doi:10.1186/1471-2229-10-176

    Article  Google Scholar 

  • Garcia S, Gálvez F, Gras A, Kovařík A, Garnatje T (2014) Plant rDNA database: update and new features. Database. doi:10.1093/database/bau063

    Google Scholar 

  • Garcia S, Kovařík A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Pl J 89:1020–1030. doi:10.1111/tpj.13442

    Article  CAS  Google Scholar 

  • Garnatje T, Canela MA, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2011) GSAD: a genome size in the asteraceae database. Cytom Part A. doi:10.1002/cyto.a.21056

    Google Scholar 

  • Golczyk H, Massouh A, Greiner S (2014) Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. Pl Cell 26:1280–1293, doi:10.1105/tpc.114.122655

    Article  CAS  Google Scholar 

  • Hizume M (1994) Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Jap J Genet 69:407–415. doi:10.1266/jjg.69.407

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838. doi:10.1073/pnas.0709698105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov VV, Jurka J (2003) A novel class of SINE elements derived from 5S rRNA. Molec Biol Evol 20:694–702. doi:10.1093/molbev/msg075

    Article  CAS  PubMed  Google Scholar 

  • Layat E, Sáez-Vásquez J, Tourmente S (2012) Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis. Pl Cell Physiol 53:267–276. doi:10.1093/pcp/pcr177

    Article  CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) In situ hybridization: a practical guide. Bios Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Li KP, Wu YX, Zhao H, Wang Y, Lü XM, Wang JM, Xu Y, Li ZY, Han YH (2016) Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol Biol 16:85. doi:10.1093/pcp/pcr177

    Article  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1955) Controlled mutation in maize. Carnegie Inst. Washington Year Book 54:245–255

    Google Scholar 

  • Mizuochi H, Marasek A, Okazaki K (2007) Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica 155:235–248. doi:10.1007/s10681-006-9325-y

    Article  CAS  Google Scholar 

  • Peška V, Sýkorová E, Fajkus J (2008) Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytog Gen Res 122:380–387. doi:10.1159/000167826

    Article  Google Scholar 

  • Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Fajkus J (2015) Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Pl J 82:644–654. doi:10.1111/tpj.12839

    Article  Google Scholar 

  • Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB): a community resource of plant chromosome numbers. New Phytol 206:19–26. doi:10.1111/nph.13191

    Article  PubMed  Google Scholar 

  • Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch AR, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158:215–222. doi:10.1111/j.1095-8339.2008.00831.x

    Article  Google Scholar 

  • Rosato M, Kovařík A, Garilleti R, Rosselló JA (2016) Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS ONE 11:e0162544. doi:10.1371/journal.pone.0162544

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata F, Hizume M (2011) Survey of Arabidopsis- and Human-type telomere repeats in plants using fluorescence in situ hybridisation. Cytologia 76:353–360. doi:10.1508/cytologia.76.353

    Article  CAS  Google Scholar 

  • Sochorová J, Coriton O, Kuderová A, Lunerová J, Chèvre AM, Kovařík A (2017) Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann Bot (Oxford) 116:13–26. doi:10.1093/aob/mcw187

    Article  Google Scholar 

  • Souza G, Vanzela AL, Crosa O, Guerra M (2016) Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae). Genetica 144(2):157–166. doi:10.1007/s10709-016-9886-1

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (2004) Characterization of telomere DNA among five species of pteridophytes and bryophytes. J Bryol 26:175–180. doi:10.1179/037366804X5279

    Article  Google Scholar 

  • Sýkorová E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003a) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Pl J 34:283–291. doi:10.1046/j.1365-313X.2003.01731.x

    Article  Google Scholar 

  • Sýkorová E, Lim KY, Kunická Z, Chase MW, Bennett MD, Fajkus J, Leitch AR (2003b) Telomere variability in the monocotyledonous plant order Asparagales. Proc Roy Soc London, Ser B, Biol Sci 270:1893–1904. doi:10.1098/rspb.2003.2446

    Article  Google Scholar 

  • The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: aPG IV. Bot J Linn Soc 181:1–20. doi:10.1111/boj.12385

    Article  Google Scholar 

  • The Plant List (2010) Version 1. Published on the internet. Available at: http://www.theplantlist.org/. Accessed 30 Jan 2017

  • Thomas HM, Williams K, Harper JA (1996) Labelling telomeres of cereals, grasses and clover by primed in situ DNA labelling. Chrom Res 4:182–184. doi:10.1007/BF02254956

    Article  CAS  PubMed  Google Scholar 

  • Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GTH, Macas J, Fajkus J, Schubert I, Fuchs J (2015) Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Pl J 84:1087–1099. doi:10.1111/tpj.13058

    Article  CAS  Google Scholar 

  • Vierna J, Wehner S, Honer zu Siederdissen CH, Martínez-Lage A, Marz M (2013) Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity 1115:410–421. doi:10.1038/hdy.2013.63

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Pl Biol 17:21. doi:10.1186/s12870-017-0978-6

    Article  Google Scholar 

  • Wicke S, Costa A, Muñoz J, Quandt D (2011) Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Molec Phylogen Evol 61:321–332. doi:10.1016/j.ympev.2011.06.023

    Article  CAS  Google Scholar 

  • Young HA, Sarath G, Tobias CM (2012) Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. BMC Pl Biol 12:117. doi:10.1186/1471-2229-12-117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Karina Barros and Maria Pilar Alonso-Lifante, librarians of the IBB-CSIC-ICUB, for their help in publication search. The Dirección General de Investigación Científica y Técnica from the Government of Spain (CGL2016-75694-P), the Czech Science Foundation (P506/16/02149 J) and the Government of Catalonia (“Ajuts a grups de recerca consolidats”, 2014SGR514) are acknowledged for funding. Sònia Garcia benefits from a “Ramón y Cajal” contract from the Government of Spain (RYC-2014-16608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sònia Garcia.

Ethics declarations

Conflict of interest

The authors declare that has no conflict of interest.

Additional information

Handling editor: Visnja Bessendorfer.

A correction to this article is available online at https://doi.org/10.1007/s00606-017-1475-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitales, D., D’Ambrosio, U., Gálvez, F. et al. Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Syst Evol 303, 1115–1121 (2017). https://doi.org/10.1007/s00606-017-1440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1440-9

Keywords

Navigation