Skip to main content
Log in

Demineralized bone matrix in anterior cervical discectomy and fusion: a systematic review

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Anterior cervical discectomy and fusion (ACDF) is one of the most widely used procedures in cervical spine. Demineralized bone matrix (DBM) is one of the fusion options that has been used in treatment of the bone defects for years. The purpose of this review is to provide an evidence-based analysis on the current evidence for effectiveness of DBM in ACDF.

Methods

A systematic search of the literature was conducted using MEDLINE, Scopus, and CENTRAL. The risk of bias was evaluated with the criteria recommended by the Cochrane Back and Neck group and the Methodological Index for Non-Randomized Studies (MINORS). The patient-reported outcome measures included the visual analog scale (VAS), Odom’s criteria, Japanese Orthopaedic Association (JOA), and Neck Disability Index (NDI). Secondary outcome measures were fusion rate, non-union, subsidence, collapse, displacement, spinal alignment, and re-operation.

Results

Twelve studies met the eligibility criteria, of which three were randomized and nine were non-randomized. Patient-reported outcomes were non-inferior for DBM compared with the autograft and other bone substitute materials. The DBM had a fusion rate comparable with other graft materials, particularly in long term (88.8–100%, after 18 months follow-up). The majority of studies reported no collapse, subsidence or displacement with DBM. The revision surgery was mainly due to the symptomatic non-union in 4.1–8.3% of the DBM cases. Preservation of the angle of cervical lordosis was acceptable with DBM fusion.

Conclusions

Most of the studies reported non-inferior results for DBM compared with autograft and other graft substitute materials in terms of patient-reported outcomes, fusion rate, and safety. However, the quantity and quality of evidence is very limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206–210. doi:10.3171/jns.1996.85.2.0206

    Article  CAS  PubMed  Google Scholar 

  2. Ryken TC, Heary RF, Matz PG, Anderson PA, Groff MW, Holly LT, Kaiser MG, Mummaneni PV, Choudhri TF, Vresilovic EJ, Resnick DK (2009) Techniques for cervical interbody grafting. J Neurosurg Spine 11:203–220. doi:10.3171/2009.2.spine08723

    Article  PubMed  Google Scholar 

  3. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 84-a:716–720

    Article  PubMed  Google Scholar 

  4. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. doi:10.1016/j.injury.2011.06.015

    Article  PubMed  Google Scholar 

  5. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139. doi:10.1097/01.brs.0000041587.55176.67

    Article  PubMed  Google Scholar 

  6. Baird EO, Egorova NN, McAnany SJ, Qureshi SA, Hecht AC, Cho SK (2014) National trends in outpatient surgical treatment of degenerative cervical spine disease. Global Spine J 4:143–150. doi:10.1055/s-0034-1376917

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marquez-Lara A, Nandyala SV, Fineberg SJ, Singh K (2014) Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011. Spine 39:476–481. doi:10.1097/brs.0000000000000165

    Article  PubMed  Google Scholar 

  8. Oglesby M, Fineberg SJ, Patel AA, Pelton MA, Singh K (2013) Epidemiological trends in cervical spine surgery for degenerative diseases between 2002 and 2009. Spine 38:1226–1232. doi:10.1097/BRS.0b013e31828be75d

    Article  PubMed  Google Scholar 

  9. Senn N (1889) Senn on the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Ann Surg 10:352–368

    Article  Google Scholar 

  10. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  11. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283

    Article  CAS  PubMed  Google Scholar 

  12. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50:1392–1406

    Article  CAS  PubMed  Google Scholar 

  13. Sampath TK, Reddi AH (1981) Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci USA 78:7599–7603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Urist MR, Sato K, Brownell AG, Malinin TI, Lietze A, Huo YK, Prolo DJ, Oklund S, Finerman GA, DeLange RJ (1983) Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med 173:194–199

    Article  CAS  PubMed  Google Scholar 

  15. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG (2006) Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 31:2813–2819. doi:10.1097/01.brs.0000245863.52371.c2

    Article  PubMed  Google Scholar 

  16. Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547. doi:10.1097/01.brs.0000201424.27509.72

    Article  PubMed  Google Scholar 

  17. Schultz DG (2008) FDA public health notification: life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062000.htm. Accessed 20 July 2016

  18. Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. In. The Cochrane Collaboration. http://handbook.cochrane.org/ Accessed 20 July 2016

  19. Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW (2015) 2015 Updated Method Guideline for Systematic Reviews in the Cochrane Back and Neck Group. Spine 40:1660–1673. doi:10.1097/brs.0000000000001061

    Article  PubMed  Google Scholar 

  20. Furlan AD, Pennick V, Bombardier C, van Tulder M (2009) 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine 34:1929–1941. doi:10.1097/BRS.0b013e3181b1c99f

    Article  PubMed  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. doi:10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. doi:10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Br Med J (Clin Res Ed) 349:g7647. doi:10.1136/bmj.g7647

    Google Scholar 

  24. Odom GL, Finney W, Woodhall B (1958) Cervical disk lesions. JAMA 166:23–28

    Article  CAS  Google Scholar 

  25. Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354–364

    Article  CAS  PubMed  Google Scholar 

  26. Vernon H, Mior S (1991) The neck disability index: a study of reliability and validity. J Manipul Physiol Ther 14:409–415

    CAS  Google Scholar 

  27. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716

    Article  PubMed  Google Scholar 

  28. Kim SY, Park JE, Lee YJ, Seo HJ, Sheen SS, Hahn S, Jang BH, Son HJ (2013) Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol 66:408–414. doi:10.1016/j.jclinepi.2012.09.016

    Article  PubMed  Google Scholar 

  29. An HS, Simpson JM, Glover JM, Stephany J (1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 20:2211–2216

    Article  CAS  PubMed  Google Scholar 

  30. Xie Y, Li H, Yuan J, Fu L, Yang J, Zhang P (2015) A prospective randomized comparison of PEEK cage containing calcium sulphate or demineralized bone matrix with autograft in anterior cervical interbody fusion. Int Orthop 39:1129–1136. doi:10.1007/s00264-014-2610-9

    Article  PubMed  Google Scholar 

  31. Yi J, Lee GW, Nam WD, Han KY, Kim MH, Kang JW, Won J, Kim SW, Noh W, Yeom JS (2015) A prospective randomized clinical trial comparing bone union rate following anterior cervical discectomy and fusion using a polyetheretherketone cage: Hydroxyapatite/B-tricalcium phosphate mixture versus hydroxyapatite/demineralized bone matrix mixture. Asian Spine J 9:30–38. doi:10.4184/asj.2015.9.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Christodoulou A, Ploumis A, Terzidis I, Hantzidis P, Tapsis K, Pournaras J (2004) Combined interbody cage and anterior plating in the surgical treatment of cervical disc disease. Acta Orthop Belg 70:461–465

    PubMed  Google Scholar 

  33. Demircan MN, Kutlay AM, Colak A, Kaya S, Tekin T, Kibici K, Ungoren K (2007) Multilevel cervical fusion without plates, screws or autogenous iliac crest bone graft. J Clin Neurosci 14:723–728. doi:10.1016/j.jocn.2006.02.026

    Article  PubMed  Google Scholar 

  34. Kelany O, Amin AH, Gamal M (2012) Results of multilevel anterior cervical discectomy and cage assisted fusion without plates. Life Sci J 9:1836–1845

    Google Scholar 

  35. Kukreja S, Ahmed OI, Haydel J, Nanda A, Sin AH (2015) Complications of anterior cervical fusion using a low-dose recombinant human bone morphogenetic protein-2. Korean J Spine 12:68–74. doi:10.14245/kjs.2015.12.2.68

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moon HJ, Kim JH, Kim JH, Kwon TH, Chung HS, Park YK (2011) The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir (Wien) 153:559–565. doi:10.1007/s00701-010-0879-z

    Article  Google Scholar 

  37. Park HW, Lee JK, Moon SJ, Seo SK, Lee JH, Kim SH (2009) The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine 34:E591–E595. doi:10.1097/BRS.0b013e3181ab8b9a

    Article  PubMed  Google Scholar 

  38. Topuz K, Colak A, Kaya S, Simsek H, Kutlay M, Demircan MN, Velioglu M (2009) Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J 18:238–243. doi:10.1007/s00586-008-0869-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM (2007) Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J 16:1257–1265. doi:10.1007/s00586-007-0351-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89:342–345. doi:10.1302/0301-620x.89b3.18270

    Article  CAS  PubMed  Google Scholar 

  41. Jin L, Wan Y, Shimer AL, Shen FH, Li XJ (2012) Intervertebral disk-like biphasic scaffold- demineralized bone matrix cylinder and poly(polycaprolactone triol malate)-for interbody spine fusion. J Tissue Eng 3:1–8. doi:10.1177/2041731412454420

    Article  Google Scholar 

  42. Takikawa S, Bauer TW, Kambic H, Togawa D (2003) Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J Biomed Mater Res A 65:37–42

    Article  PubMed  Google Scholar 

  43. Yew A, Kimball J, Lu DC (2013) Surgical seroma formation following posterior cervical laminectomy and fusion without rhBMP-2: case report. J Neurosurg Spine 19:297–300. doi:10.3171/2013.5.spine121028

    Article  PubMed  Google Scholar 

  44. Eastlack RK, Garfin SR, Brown CR, Meyer SC (2014) Osteocel Plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine 39:E1331–E1337. doi:10.1097/brs.0000000000000557

    Article  PubMed  Google Scholar 

  45. Gill SS, Sala JL, Davis RF (2007) The use of Osteotech surface-activated cortical lordotic allograft in anterior cervical discectomy and fusion. Neurosurg Q 17:161–165. doi:10.1097/WNQ.0b013e3180600c27

    Article  Google Scholar 

  46. Kong CG, Kim YY, Ahn CY, Park JB (2013) Diagnostic usefulness of white blood cell and absolute neutrophil count for postoperative infection after anterior cervical discectomy and fusion using allograft and demineralized bone matrix. Asian Spine J 7:173–177. doi:10.4184/asj.2013.7.3.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kong CG, Kim YY, Park JB (2012) Postoperative changes of early-phase inflammatory indices after uncomplicated anterior cervical discectomy and fusion using allograft and demineralised bone matrix. Int Orthop 36:2293–2297. doi:10.1007/s00264-012-1645-z

    PubMed  PubMed Central  Google Scholar 

  48. Block JE, Poser J (1995) Does xenogeneic demineralized bone matrix have clinical utility as a bone graft substitute? Med Hypotheses 45:27–32. doi:10.1016/0306-9877(95)90195-7

    Article  CAS  PubMed  Google Scholar 

  49. Shapiro S, Bindal R (2000) Femoral ring allograft for anterior cervical interbody fusion: technical note. Neurosurgery 47:1457–1459

    Article  CAS  PubMed  Google Scholar 

  50. Barrack RL (2005) Bone graft extenders, substitutes, and osteogenic proteins. J Arthroplasty 20:94–97

    Article  PubMed  Google Scholar 

  51. Kaiser MG, Groff MW, Watters WC 3rd, Ghogawala Z, Mummaneni PV, Dailey AT, Choudhri TF, Eck JC, Sharan A, Wang JC, Dhall SS, Resnick DK (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes as an adjunct for lumbar fusion. J Neurosurg Spine 21:106–132. doi:10.3171/2014.4.spine14325

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. Authors have no other source of support, financial disclosure or conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vafa Rahimi-Movaghar.

Ethics declarations

Conflict of interest

None.

Appendix 1: search strategy

Appendix 1: search strategy

Pubmed

((“Intervertebral Disc Degeneration”[Mesh] OR Radiculopath* OR Myelopath* OR ((Disc OR Disk) AND (degenerati* OR Displacement OR Herniation))) OR (“Spinal Fusion”[Mesh] OR “Arthrodesis”[Mesh] OR ((Spin* OR Interbody OR Inter-body) AND fusion)) OR (“Diskectomy”[Mesh] OR discectomy OR diskectomy))) AND (“Cervical Vertebrae”[Mesh] OR “Neck”[Mesh] OR cervical OR neck) AND (“Bone Matrix”[Mesh] OR (Deminerali* AND bone AND matri*)).

Scopus

(ALL(“Disc Degeneration” OR “Radiculopath*” OR “Myelopath*”) OR (ALL(“Disc” OR “Disk”) AND ALL(“degenerati*” OR “Displacement” OR “Herniation”)) OR ALL(“Spinal Fusion” OR “Arthrodesis”) OR ((ALL(“Spin*” OR “Interbody” OR “Inter-body”) AND “fusion”)) OR ALL(“Diskectomy” OR “discectomy”)) AND ALL(cervical OR neck) AND ALL(“Deminerali*” AND “bone” AND “matri*”).

OVID

  1. 1.

    Intervertebral Disc Degeneration/.

  2. 2.

    Radiculopath$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  3. 3.

    Myelopath$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  4. 4.

    Disc.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  5. 5.

    Disk.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  6. 6.

    4 or 5.

  7. 7.

    Degenerati$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  8. 8.

    Displacement.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  9. 9.

    Herniation.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  10. 10.

    7 or 8 or 9.

  11. 11.

    6 and 10.

  12. 12.

    1 or 2 or 3 or 11.

  13. 13.

    Spinal Fusion/.

  14. 14.

    Arthrodesis/.

  15. 15.

    Spin$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  16. 16.

    Interbody.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  17. 17.

    Interbody.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  18. 18.

    Fusion.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  19. 19.

    15 or 16 or 17.

  20. 20.

    18 and 19.

  21. 21.

    13 or 14 or 20.

  22. 22.

    Diskectomy/.

  23. 23.

    Discectomy.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  24. 24.

    Diskectomy.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  25. 25.

    22 or 23 or 24.

  26. 26.

    12 or 21 or 25.

  27. 27.

    Cervical Vertebrae/.

  28. 28.

    Neck/.

  29. 29.

    Cervical.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  30. 30.

    Neck.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  31. 31.

    27 or 28 or 29 or 30.

  32. 32.

    Bone Matrix/.

  33. 33.

    Deminerali$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  34. 34.

    Bone.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  35. 35.

    Matri$.mp. [mp = title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier].

  36. 36.

    33 and 34 and 35.

  37. 37.

    32 or 36.

  38. 38.

    26 and 31 and 37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadegan, S.A., Abedi, A., Jazayeri, S.B. et al. Demineralized bone matrix in anterior cervical discectomy and fusion: a systematic review. Eur Spine J 26, 958–974 (2017). https://doi.org/10.1007/s00586-016-4858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4858-9

Keywords

Navigation