Skip to main content
Log in

Depth-sensing nanoindentation measurement techniques and applications

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

To measure nanomechanical properties of surface layers of bulk materials and thin films, depth-sensing nanoindentation measurement techniques are used commonly. The nanoindentation apparatus continuously monitors the load and the position of the indenter relative to the surface of the specimen (depth of an indent or displacement) during the indentation process. Indentation experiments can be performed at a penetration depth of as low as about 5 nm. This paper presents an overview of various nanoindentation techniques, various measurement options, and data analysis. Data on elastic–plastic deformation behavior, hardness, elastic modulus, scratch resistance, film-substrate adhesion, residual stresses, time-dependent creep and relaxation properties, fracture toughness, and fatigue are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Keysight brochures)

Fig. 3

(adapted from Bhushan et al. 1996a)

Fig. 4
Fig. 5

(adapted from Bhushan and Li 2003)

Fig. 6
Fig. 7

(adapted from Oliver and Pharr 1992)

Fig. 8

(adapted from Shih et al. 1991)

Fig. 9

(adapted from Doerner and Nix 1986)

Fig. 10

(adapted from Doerner and Nix 1986)

Fig. 11

(adapted from Oliver and Pharr 1992)

Fig. 12

(adapted from Oliver and Pharr 1992)

Fig. 13
Fig. 14

(adapted from Bhushan and Li 2003)

Fig. 15

(adapted from Palacio et al. 2007b)

Fig. 16

(adapted from Bhattacharya and Nix 1988b)

Fig. 17

(adapted from King 1987)

Fig. 18

(adapted from Oliver and Pharr 1992)

Fig. 19

(adapted from Oliver and Pharr 1992)

Fig. 20

(adapted from Pharr 1992)

Fig. 21

(adapted from Pharr 1992)

Fig. 22

(adapted from Pharr 1992)

Fig. 23

(adapted from Weihs et al. 1992)

Fig. 24

(adapted from Weihs et al. 1992)

Fig. 25

(adapted from Kulkarni and Bhushan 1997)

Fig. 26

(adapted from Fabes et al. 1992)

Fig. 27

(adapted from Oliver and Pharr 1992)

Fig. 28

(adapted from Bhushan and Gupta 1995)

Fig. 29

(adapted from Bhushan et al. 1996a)

Fig. 30

(adapted from Bhushan et al. 1996a)

Fig. 31

(adapted from Kulkarni and Bhushan 1996b)

Fig. 32

(adapted from Kulkarni and Bhushan 1996b)

Fig. 33

(adapted from Bhushan et al. 1996a)

Fig. 34

(adapted from Oliver and Pharr 1992)

Fig. 35

(adapted from Li and Bhushan 2002a)

Fig. 36

(adapted from Li and Bhushan 2002a)

Fig. 37

(adapted from Li and Bhushan 2002a)

Fig. 38

(adapted from Maharaj and Bhushan 2015)

Fig. 39

(adapted from Maharaj and Bhushan 2015)

Fig. 40

(adapted from Maharaj and Bhushan 2015)

Fig. 41

(adapted from Maharaj and Bhushan 2015)

Fig. 42

(adapted from San Juan et al. 2009)

Fig. 43
Fig. 44

(adapted from Bhushan and Gupta 1995)

Fig. 45

(adapted from Li and Bhushan 1999a)

Fig. 46

(adapted from Li and Bhushan 1999a)

Fig. 47

(adapted from Li and Bhushan 1999a, 2011, 2017)

Fig. 48

(adapted from Bhushan and Li 2003)

Fig. 49
Fig. 50
Fig. 51

(adapted from Bhushan et al. 1996b)

Fig. 52

(adapted from Pharr et al. 1993)

Fig. 53

(adapted from Li et al. 1997)

Fig. 54

(adapted from Li et al. 1997)

Fig. 55

(adapted from Li and Bhushan 2002b)

Fig. 56

(adapted from Li and Bhushan 2002b)

Fig. 57

(adapted from Li and Bhushan 2002b)

Fig. 58

(adapted from Li and Bhushan 2002b)

Similar content being viewed by others

Abbreviations

A:

Contact area

c:

Crack length

C:

Compliance

E:

Elastic modulus

Er, Es, Ei :

Reduced modulus and elastic moduli of the specimen and indenter, respectively

h:

Indentation (penetration) depth

hc :

Contact depth

hp :

Plastic indentation depth

HB:

Indentation hardness

KI :

Stress intensity factor

KIc :

Fracture toughness

S:

Stiffness (1/compliance)

W:

Normal load

σy :

Yield strength

τ:

Adhesion strength

νs and νi :

Poisson’s ratio of the specimen and the indenter, respectively

References

  • Ahn J, Mittal KL, Macqueen RH (1978) Adhesion measurement of thin films, thick films, and bulk coatings: hardness and adhesion of filmed structures as determined by the scratch technique STP 640. ASTM, Philadelphia, pp 134–157

    Book  Google Scholar 

  • Alba S, Loubet JL, Vovelle L (1993) Evaluation of mechanical properties and adhesion of polymer coatings by continous hardness measurements. J Adhes Sci Technol 7:131–140

    Article  Google Scholar 

  • Alekhin VP, Berlin GS, Isaev AV, Kalei GN, Merkulov VA, Skvortsov VN, Ternovskii AP, Krushchov MM, Shnyrev GD, Shorshorov MKh (1972) Micromechanical testing by micromechanical testing of materials by microcompression. Zavod Lab 38:619–621

    Google Scholar 

  • Anonymous (1979) Standard Test Method for Microhardness of Materials ASME Designation: E384-73, ASTM, Philadelphia, pp 359–379

  • Anonymous (1988) Properties of Silicon EMIS Data Reviews Series No. 4, INSPEC, The Institution of Electrical Engineers, London

  • Anonymous (2014) Keysight Nano Indenter G200 Data Sheet,” Keysight Technologies, Santa Rosa, CA

  • Antis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I direct crack measurements. J Am Ceram Soc 64:533–538

    Article  Google Scholar 

  • Atkins AG, Silverio A, Tabor D (1966) Indentation hardness and the creep of solids. J Inst Metals 94:369–378

    Google Scholar 

  • Bell TJ, Field JS, Swain MV (1992) Elastic-plastic characterization of thin films with spherical indentation. Thin Solid Films 220:289–294

    Article  Google Scholar 

  • Benjamin P, Weaver C (1960) Measurement of adhesion of thin films. Proc R Soc Lond A 254:163–176

    Article  Google Scholar 

  • Berkovich ES (1951) Three-faceted diamond pyramid for micro-hardness testing. Indus Diam Rev 11:129–132

    Google Scholar 

  • Bhattacharya AK, Nix WE (1988a) Finite element simulation of indentation experiments. Int J Solids Struct 24:881–891

    Article  Google Scholar 

  • Bhattacharya AK, Nix WD (1988b) Analysis of elastic and plastic deformation associated with indentation testing of the thin films on substrates. Int J Solids Struct 24:1287–1298

    Article  Google Scholar 

  • Bhushan B (1987) Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications—Part 2: Screening Techniques. In: Harding WB, DiBari GA (eds) Testing of Metallic and Inorganic Coatings STP 947. ASTM, Philadelphia, pp 310–319

    Chapter  Google Scholar 

  • Bhushan B (1996) Tribology and mechanics of magnetic storage devices, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bhushan B (1999a) Nanomechanical properties of solid surfaces and thin films, in Handbook of micro/nanotribology, 2nd edn. CRC Press, Boca Raton, pp 443–524

    Google Scholar 

  • Bhushan B (1999b) Wear and mechanical characterisation on micro- to picoscales using AFM. Int Mater Rev 44:105–117

    Article  Google Scholar 

  • Bhushan B (1999c) Chemical, mechanical, and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diam Relat Mater 8:1985–2015

    Article  Google Scholar 

  • Bhushan B (2001) Modern tribology handbook, Vol. 1 and 2. CRC Press, Boca Raton

    Google Scholar 

  • Bhushan B (2011) Nanotribology and nanomechanics I & II. Springer, Heidelberg

    Book  Google Scholar 

  • Bhushan B (2013a) Principles and applications of tribology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Bhushan B (2013b) Introduction to tribology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Bhushan B (2017) Springer handbook of nanotechnology, 4th edn. Springer International, Switzerland

    Google Scholar 

  • Bhushan B, Gupta BK (1995) Micromechanical Characterization of Ni-P Coated Aluminum-Magnesium, Glass, and Glass Ceramic Substrates and Finished Magnetic Thin-Film Rigid Disks. Adv Info Storage Syst 6:193–208

    Article  Google Scholar 

  • Bhushan B, Gupta BK (1997) Handbook of Tribology: Materials, Coatings and Surface Treatments, McGraw Hill, New York (1991); Reprint edition (1997). Krieger Publishing Co., Malabar

    Google Scholar 

  • Bhushan B, Koinkar VN (1994) Nanoindentation hardness measurements using atomic force microscopy. Appl Phys Lett 64:1653–1655

    Article  Google Scholar 

  • Bhushan B, Li X (1997) Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical system devices. J Mater Res 12:54–63

    Article  Google Scholar 

  • Bhushan B, Li X (2003) Nanomechanical characterisation of solid surfaces and thin films. Int Mater Rev 48:125–164

    Article  Google Scholar 

  • Bhushan B, Patton ST (1996) Pole tip recession studies of hard carbon-coated thin-film tape heads. J Appl Phys 79:5916–5918

    Article  Google Scholar 

  • Bhushan B, Venkatesan S (2005) Effective mechanical properties of layered rough surfaces. Thin Solid Films 473:278–295

    Article  Google Scholar 

  • Bhushan B, Landesman AL, Shack RV, Vukobratovich D, Walters VS (1985) Instrument for Testing Thin Films Such as Magnetic Tapes. IBM Tech Discl Bull 28:2975–2976

    Google Scholar 

  • Bhushan B, Williams VS, Shack RV (1988) In-situ nanoindentation hardness apparatus for mechanical characterization of extremely thin films. ASME J Tribol 110:563–571

    Article  Google Scholar 

  • Bhushan B, Gupta BK, Azarian MH (1995) Nanoindentation, microscratch, friciton and wear studies of coatings for contact recording applications. Wear 181–183:743–758

    Article  Google Scholar 

  • Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT (1996a) Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy. Philos Mag 74:1117–1128

    Article  Google Scholar 

  • Bhushan B, Chyung K, Miller RA (1996b) Micromechanical property measurements of glass and glass-ceramic substrates for magnetic thin-film rigid disks for gigabit recording. Adv Info Storage Syst 7:3–16

    Google Scholar 

  • Bhushan B, Theunissen GSAM, Li X (1997) Tribological studies of chromium oxide films for magnetic recording applications. Thin Solid Films 311:67–80

    Article  Google Scholar 

  • Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (2014) Handbook of nanomaterials properties, Vol. 1-2. Springer, Heidelberg

    Book  Google Scholar 

  • Blau PJ, Lawn BR (1986) Microindentation techniques in materials science and engineering, STP 889. ASTM, Philadelphia

    Google Scholar 

  • Blau PJ, Oliver WC, Snead L (1997) The scanning micro-sclerometer: a new method for scratch hardness mapping. Tribol Int 30:483–490

    Article  Google Scholar 

  • Bolshakov A, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation. II. Finite element simulations. J Mater Res 11:760–768

    Article  Google Scholar 

  • Buckle H (1973) Use of the hardness test to determine other material properties. In: Westbrook JW, Conrad H (eds) The science of hardness testing and its research applications. American Society for Metals, Metals Park, Ohio, pp 453–491

    Google Scholar 

  • Bull SJ, Rickerby DS (1990) New developments in the modelling of the hardness and scratch adhesion of thin films. Surf Coat Technol 42:149–164

    Article  Google Scholar 

  • Bulychev SI, Alekhin VP, Shorshorov MKh, Ternovskii AP, Shnyrev GD (1975) Determining Young’s modulus from the indenter penetration diagram. Zavod Lab 41:11137–11140

    Google Scholar 

  • Bulychev SI, Alekhin VP, Shorshorov MKh (1979) Studies of physico-mechanical properties in surface layers and microvolumes of materials by the method of continuous application of an indenter. Fizika Khim. Obrab. Materialov, No, p 5

    Google Scholar 

  • Burnett PJ, Rickerby DS (1987a) The relationship between hardness and scratch adhesion. Thin Solid Films 154:403–416

    Article  Google Scholar 

  • Burnett PJ, Rickerby DS (1987b) The mechanical properties of wear resistant coatings I: modelling of hardness behavior. Thin Solid Films 148:41–50

    Article  Google Scholar 

  • Callahan DL, Morris JC (1992) The extent of phase transformation in silicon hardness indentations. J Mater Res 7:1614–1617

    Article  Google Scholar 

  • Campbell DS (1970) Mechanical properties of thin films. In: Maissel LI, Glang R (eds) Handbook of thin film technology, Chap. 12. McGraw-Hill, New York

    Google Scholar 

  • Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J Am Ceram Soc 64:539–543

    Article  Google Scholar 

  • Chiang SS, Marshall DB, Evans AG (1981) Simple method for adhesion measurement. In: Pask J, Evans AG (eds) Surfaces and interfaces in ceramics and ceramic-metal systems. Plenum, New York, pp 603–612

    Chapter  Google Scholar 

  • Chiang SS, Marshall DB, Evans AG (1982) The response of solids to elastic/plastic indentation: I. Stresses and residual stresses. J Appl Phys 53:298–311

    Article  Google Scholar 

  • Cho D, Bhushan B (2016) Nanofriction and nanowear of polypropylene, polyethylene terephthalate, and high-density polyethylene during sliding. Wear 352–353:18–23

    Article  Google Scholar 

  • Chu SNG, Li JCM (1977) Impression creep: a new creep test. J Mater Sci 12:2200–2208

    Article  Google Scholar 

  • Chu SNG, Li JCM (1980) Localized stress relaxation by impression testing. Mater Sci Eng 45:167–171

    Article  Google Scholar 

  • Cook RF, Pharr GM (1990) Direct observation and analysis of indentation cracking in glasses and ceramics. J Am Ceram Soc 73:787–817

    Article  Google Scholar 

  • Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1:601–609

    Article  Google Scholar 

  • Doerner MF, Gardner DS, Nix WD (1986) Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J Mater Res 1:845–851

    Article  Google Scholar 

  • Evans AG, Hutchinson JW (1984) On the mechanics of delamination and spalling in compressed films. Int J Solids Struct 20:455–466

    Article  Google Scholar 

  • Fabes BD, Oliver WC, McKee RA, Walker FJ (1992) The determination of film hardness from the composite response of film and substrate to nanometer scale indentation. J Mater Res 7:3056–3064

    Article  Google Scholar 

  • Fischer-Cripps AC (2002) Nanoindentation. Springer, New York

    Book  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiments. Acta Metall et Mater 42:475–487

    Article  Google Scholar 

  • Gane N, Cox JM (1970) The micro-hardness of metals at very low loads. Philos Mag 22:881–891

    Article  Google Scholar 

  • Goken M, Kempf M (2001) Pop-ins in nanoindentation-the initial yield point. Zeitschrift Metallikd 92:1061–1067

    Google Scholar 

  • Greene JE, Woodhouse J, Pestes M (1974) A technique for detecting critical loads in the scratch test for thin-film adhesion. Rev Sci Instrum 45:747–749

    Article  Google Scholar 

  • Gupta BK, Bhushan B (1994) The nanoindentation studies of ion implanted silicon. Surf Coat Technol 68(69):564–570

    Article  Google Scholar 

  • Gupta BK, Bhushan B (1995a) Micromechanical properties of amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 270:391–398

    Article  Google Scholar 

  • Gupta BK, Bhushan B (1995b) Mechanical and tribological properties of hard carbon coatings for magnetic recording heads. Wear 190:110–122

    Article  Google Scholar 

  • Gupta BK, Chevallier J, Bhushan B (1993) Tribology of ion bombarded silicon for micromechanical applications. ASME J Tribol 115:392–399

    Article  Google Scholar 

  • Gupta BK, Bhushan B, Chevallier J (1994) Modification of tribological properties of silicon by boron ion implantation. Tribol Trans 37:601–607

    Article  Google Scholar 

  • Hainsworth SV, Chandler HW, Page TF (1996) Analysis of nanoindentation load-displacement loading curves. J Mater Res 14:2283–2295

    Google Scholar 

  • Hainsworth SV, McGurk MR, Page TF (1998) The effect of coating cracking on the indentation response of thin hard-coated systems. Surf Coat Technol 102:97–107

    Article  Google Scholar 

  • Hannula SP, Wanagel J, Li CY (1986) A Miniaturized Mechanical Testing System for Small Scale Specimen Testing. In: Corwin WR, Lucas GE (eds) The Use of Small-Scale Specimens for Testing Irradiated Material STP 888. ASTM, Philadelphia, pp 233–251

    Chapter  Google Scholar 

  • Hay JC, Bolshakov A, Pharr GM (1999) A critical examination of the fundamental relations used in the analysis of nanoindentation data. J Mater Res 14:2296–2305

    Article  Google Scholar 

  • Heavens OS (1950) Some factors influencing the adhesion of films produced by vacuum evaporation. J Phys Rad 11:355–360

    Article  Google Scholar 

  • Henshall JL, Brookes CA (1985) The measurement of KIc in single crystal SiC using the indentation method. J Mater Sci Lett 4:783–786

    Article  Google Scholar 

  • Hong S, Weihs TP, Bravman JC, Nix WD (1990) Measuring stiffnesses and residual stresses of silicon nitride in thin films. J Electron Mater 19:903

    Article  Google Scholar 

  • Jacobson S, Jonsson B, Sundquist B (1983) The use of fast heavy ions to improve thin film adhesion. Thin Solid Films 107:89–98

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Joslin DL, Oliver WC (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res 5:123–126

    Article  Google Scholar 

  • King RB (1987) Elastic analysis of some punch problems for layered medium. Int J Solids Struct 23:1657–1664

    Article  MATH  Google Scholar 

  • Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) On the hardness of coated systems. Surf Coat Technol 99:171–183

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1996a) Nanoscale mechanical property measurements using modified atomic force microscopy. Thin Solid Films 290–291:206–210

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1996b) Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy. Mater Lett 29:221–227

    Article  Google Scholar 

  • Kulkarni AV, Bhushan B (1997) Nanoindentation measurements of amorphous carbon coatings. J Mater Res 12:2707–2714

    Article  Google Scholar 

  • Kumar A, Bhushan B (2015) Nanomechanical, nanotribological, and macrotribological characterization of hard coatings and surface treatment of H-13 steel. Tribol Int 81:149–158

    Article  Google Scholar 

  • LaFontaine WR, Yost B, Black RD, Li CY (1990) Indentation load relaxation experiments with indentation depth in the submicron range. J Mater Res 5:2100–2116

    Article  Google Scholar 

  • LaFontaine WR, Paszkiet CA, Korhonen MA, Li CY (1991) Residual stress measurements of thin aluminum metallizations by continuous indentation and X-ray stress measurement techniques. J Mater Res 6:2084–2090

    Article  Google Scholar 

  • Lankford J (1981) Threshold-microfracture during elastic/plastic indentation of ceramics. J Mater Sci 16:1177–1182

    Article  Google Scholar 

  • Laugier M (1981) The development of scratch test technique for the determination of the adhesion of coating. Thin Solid Films 76:289–294

    Article  Google Scholar 

  • Laursen TA, Simo JC (1992) A study of the mechanics of microindentation using finite elements. J Mater Res 7:618–626

    Article  Google Scholar 

  • Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lawn B, Wilshaw R (1975) Review indentation fracture: principles and applications. J Mater Sci 10:1049–1081

    Article  Google Scholar 

  • Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63:574–581

    Article  Google Scholar 

  • Li X, Bhushan B (1998a) Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films 315:214–221

    Article  Google Scholar 

  • Li X, Bhushan B (1998b) Micromechanical and tribological characterization of hard amorphous carbon coatings as thin as 5 nm for magnetic recording heads. Wear 220:51–58

    Article  Google Scholar 

  • Li X, Bhushan B (1999a) Micro/nanomechanical and tribological characterization of ultra-thin amorphous carbon coatings. J Mater Res 14:2328–2337

    Article  Google Scholar 

  • Li X, Bhushan B (1999b) Mechanical and tribological studies of ultra-thin hard carbon overcoats for magnetic recording heads. Z Metallkd 90:820–830

    Google Scholar 

  • Li X, Bhushan B (1999c) Micro/nanomechanical characterization of ceramic films for microdevices. Thin Solid Films 340:210–217

    Article  Google Scholar 

  • Li X, Bhushan B (1999d) Evaluation of fracture toughness of ultrathin and hard amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 355–356:330–336

    Article  Google Scholar 

  • Li X, Bhushan B (2000a) Development of continuous stiffness measurement technique for composite magnetic tapes. Scripta Mater 42:929–935

    Article  Google Scholar 

  • Li X, Bhushan B (2000b) Continuous stiffness measurement and creep behavior of composite magnetic tapes. Thin Solid Films 377–378:401–406

    Article  Google Scholar 

  • Li X, Bhushan B (2001a) Continuous stiffness measurements of layered materials used in magnetic storage devices. J Info Storage Proc Syst 3:131–142

    MATH  Google Scholar 

  • Li X, Bhushan B (2001b) Dynamic mechanical characterization of magnetic tapes using nanoindentation techniques. IEEE Trans Magn 37:1616–1619

    Article  Google Scholar 

  • Li X, Bhushan B (2002a) A review of nanoindentation continuous stiffness measurement and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  • Li X, Bhushan B (2002b) Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings. Scripta Mater 47:473–479

    Article  Google Scholar 

  • Li X, Bhushan B (2002c) Nanofatigue studies of ultrathin hard carbon overcoats used in magnetic storage devices. J Appl Phys 91:8334–8336

    Article  Google Scholar 

  • Li X, Bhushan B (2003) Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf Coat Technol 163–164:521–526

    Article  Google Scholar 

  • Li JCM, Chu SNG (1979) Impression fatigue. Scr Metall 13:1021–1026

    Article  Google Scholar 

  • Li WB, Henshall JL, Hooper RM, Easterling KE (1991) The mechanism of indentation creep. Acta Metall Mater 39:3099–3110

    Article  Google Scholar 

  • Li X, Diao D, Bhushan B (1997) Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater 45:4453–4461

    Article  Google Scholar 

  • Li X, Bhushan B, Inoue M (2001) Time-dependent mechanical properties and tribological behavior of magnetic tapes. Wear 251:1150–1158

    Article  Google Scholar 

  • Li X, Bhushan B, Takashima K, Baek CS, Kim YK (2003) Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97:481–494

    Article  Google Scholar 

  • Lin MR, Ritter JE, Rosenfeld L, Lardner TJ (1990) Measuring the interfacial shear strength of thin polymer coatings on glass. J Mater Res 5:1110–1117

    Article  Google Scholar 

  • Loubet JL, Georges JM, Marchesini O, Meille G (1984) Vickers indentation curves of magnesium oxide (MgO). ASME J Tribol 106:43–48

    Article  Google Scholar 

  • Loubet JL, Bauer M, Tonck A, Bec S, Gauthier-Manuel B (1993) Nanoindentation with a surface force apparatus. In: Nastasi M, Parkin DM, Gleiter H (eds) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Kluwer Academic Pub, Dordrecht, pp 429–447

    Chapter  Google Scholar 

  • Lysaght VE (1949) Indentation hardness testing. Reinhold, New York

    Google Scholar 

  • Maharaj D, Bhushan B (2015) Friction, wear, and mechanical behavior of nano-objects on the nanoscale. Mater Sci Eng R 95:1–43

    Article  Google Scholar 

  • Marshall DB, Evans AG (1984) Measurement of adherence of residual stresses in thin films by indentation. I. Mechanics of interface delamination. J Appl Phys 15:2632–2638

    Article  Google Scholar 

  • Marshall DB, Lawn BR (1979) Residual stress effects in sharp contact cracking Part 1 indentation fracture mechanics. J Mater Sci 14:2001–2012

    Article  Google Scholar 

  • Marshall DB, Oliver WC (1987) Measurement of Interfacial Mechanical Properties in Fiber-Reinforced Ceramic Composites. J Am Ceram Soc 70:542–548

    Article  Google Scholar 

  • Mayo MJ, Nix WD (1988) A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall 36:2183–2192

    Article  Google Scholar 

  • McGurk MR, Page TF (1999) Using the P-δ2 analysis to deconvolute the nanoindentation response of hard-coated systems. J Mater Res 14:2283–2295

    Article  Google Scholar 

  • Mehrotra PK, Qunito DT (1985) Techniques for evaluating mechanical properties of hard coatings. J Vac Sci Technol A 3:2401–2405

    Article  Google Scholar 

  • Mittal KL (ed) (1978) Adhesion measurements on thin coatings, thick coatings, and bulk coatings, STP640. ASTM, Philadelphia

    Google Scholar 

  • Mott BW (1957) Microindentation hardness testing. Butterworths, London

    Google Scholar 

  • Mulhearn TO, Tabor D (1960) Creep and hardness of metals: a physical study. J Inst Metals 87:7–12

    Google Scholar 

  • Nastasi M, Parkin DM, Gleiter H (eds) (1993) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Kluwer Academic Pub, Dordrecht

    Google Scholar 

  • Newey D, Wilkins MA, Pollock HM (1982) An ultra-low-load penetration hardness tester. J Phys E Sci Instrum 15:119–122

    Article  Google Scholar 

  • Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217–2245

    Article  Google Scholar 

  • Oliver WC (2001) Alternative technique for analyzing instrumented indentation data. J Mater Res 16:3202–3206

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Oliver WC, Hutchings R, Pethica JB (1986) Measurement of hardness at indentation depths as small as 20 nm. In: Blau PJ, Lawn BR (eds) Microindentation techniques in materials science and engineering STP 889. ASTM, Philadelphia, pp 90–108

    Google Scholar 

  • O’Neill H (1967) Hardness measurement of metals and alloys. Chapman and Hall, London

    Google Scholar 

  • Page TF, Oliver WC, McHargue CJ (1992) the deformation behavior of ceramic crystals subjected to very low load (Nano) indentations. J Mater Res 7:450–473

    Article  Google Scholar 

  • Palacio M, Bhushan B (2010) Nanomechanical characterization of adaptive optics components in microprojectors. J Micromech Microeng 20:064002

    Article  Google Scholar 

  • Palacio MLB, Bhushan B (2013) Depth-sensing indentation of nanomaterials and nanostructures. Mater Charact 78:1–20

    Article  Google Scholar 

  • Palacio M, Bhushan B, Ferrell N, Hansford D (2007a) Nanomechanical characterization of polymer beam structures for BioMEMS applications. Sens Actuators A 135:637–650

    Article  Google Scholar 

  • Palacio M, Bhushan B, Ferrell N, Hansford D (2007b) Adhesion properties of polymer/silicon interfaces for biological micro-/nanoelectromechanical systems applications. J Vac Sci Technol A 25:1275–1284

    Article  Google Scholar 

  • Palmquist S (1957) Method of determining the toughness of brittle materials, particularly sintered carbides. Jernkontorets Ann 141:300–307

    Google Scholar 

  • Patton ST, Bhushan B (1996) Micromechanical and tribological characterization of alternate pole tip materials for magnetic recording heads. Wear 202:99–109

    Article  Google Scholar 

  • Perry AJ (1981) The adhesion of chemically vapour-deposited hard coatings on steel—the scratch test. Thin Solid Films 78:77–93

    Article  Google Scholar 

  • Perry AJ (1983) Scratch adhesion testing of hard coatings. Thin Solid Films 197:167–180

    Article  Google Scholar 

  • Pethica JB, Oliver WC (1989) Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations. In: Bravman JC, Nix WD, Barnett DM, Smith DA (eds) Thin films: stresses and mechanical properties, vol 130. Mat. Res. Soc., Pittsburgh, pp 13–23

    Google Scholar 

  • Pethica JB, Hutchings R, Oliver WC (1983) Hardness measurements at penetration depths as small as 20 nm. Philos Mag A 48:593–606

    Article  Google Scholar 

  • Pharr GM (1992) The anomalous behavior of silicon during nanoindentation. In: Nix WD, Bravman JC, Arzt E, Freund LB (eds) Thin film: stresses and mechanical properties III, vol 239. Mater Res Soc, Pittsburgh, pp 301–312

    Google Scholar 

  • Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A 253:151–159

    Article  Google Scholar 

  • Pharr GM, Oliver WC, Clarke DR (1989) Hysteresis and discontinuity in the indentation load-displacement behavior of silicon. Scr Metall 23:1949–1952

    Article  Google Scholar 

  • Pharr GM, Oliver WC, Clarke DR (1990) The mechanical behavior of silicon during small-scale indentation. J. Electron Mater 19:881–887

    Article  Google Scholar 

  • Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7:613–617

    Article  Google Scholar 

  • Pharr GM, Harding DS, Oliver WC (1993) Measurement of fracture toughness in thin films and small volumes using nanoindentation methods. In: Nastasi M, Parkin DM, Gleiter H (eds) Mechanical properties and deformation behavior of materials having ultra-fine microsctructures. Kluwer Academic, Dordrecht, pp 449–461

    Chapter  Google Scholar 

  • Raman V, Berriche R (1992) An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J Mater Res 7:627–638

    Article  Google Scholar 

  • Randall NX, Cristoph R, Droz S, Julia-Schmutz C (1996) Localised micro-hardness measurements with a combined scanning force microscope/nanoindentation system. Thin Solid Films 290–291:348–354

    Article  Google Scholar 

  • San Juan J, No ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–419

    Article  Google Scholar 

  • Sargent PM (1986) Use of the indentation size effect on microhardness of materials characterization. In: Blau PJ, Lawn BR (eds) Microindentation techniques in materials science and engineering, STP vol 889. ASTM, Philadelphia, pp 160–174

    Google Scholar 

  • Scruby CB (1987) An introduction to acoustic emission. J Phys E Sci Instrum 20:946–953

    Article  Google Scholar 

  • Sekler J, Steinmann PA, Hintermann HE (1988) The scratch test: different critical load determination techniques. Surf Coat Technol 36:519–529

    Article  Google Scholar 

  • Shih CW, Yang M, Li JCM (1991) Effect of tip radius on nanoindentation. J Mater Res 6:2623–2628

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Stilwell NA, Tabor D (1961) Elastic recovery of conical indentation. Proc Phys Soc 78:169–179

    Article  MathSciNet  Google Scholar 

  • Stone D, LaFontaine WR, Alexopoulos PS, Wu TW, Li CY (1988) An investigation of hardness and adhesion of sputter-depostied aluminum on silicon by utilizing a continuous indentation test. J Mater Res 3:141–147

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2001) Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings. J Mater Res 16:437–445

    Article  Google Scholar 

  • Sundararajan S, Bhushan B, Namazu T, Isono Y (2002) Mechanical property measurements of nanoscale structures using an atomic force microscope. Ultramicroscopy 91:111–118

    Article  Google Scholar 

  • Suresh S (1991) Fatige of materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50:681–694

    Article  MATH  Google Scholar 

  • Swain MV, Hagan JT, Field JE (1977) Determination of the surface residual stresses in tempered glasses by indentation fracture mechanics. J Mater Sci 12:1914–1917

    Article  Google Scholar 

  • Syed Asif SA, Pethica JB (1997) Nano scale creep and the role of defects. In: Gerberich WW, Gao H, Sundgren JE, Baker SP (eds) Thin films: stresses and mechanical properties IV MRS Symp Proc, vol 436. Mat. Res. Soc., Pittsburgh, pp 201–206

    Google Scholar 

  • Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  • Tabor D (1970) The hardness of solids. Rev Phys Technol 1:145–179

    Article  Google Scholar 

  • Tangena AG, Hurkx GAM (1986) The determination of stress-strain curves of thin layers using indentation tests, ASME. J Eng Mater Technol 108:230–232

    Article  Google Scholar 

  • Ternovskii AP, Alekhin VP, Shorshorov MKh, Khrushchov MM, Skvortsov VN (1973) Micromechanical testing of materials by depression. Zavod Lab 39:1620–1624

    Google Scholar 

  • Tsui TY, Pharr GM (1999) Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J Mater Res 14:292–301

    Article  Google Scholar 

  • Tsui TY, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation. I. Experimental studies in an aluminum alloy. J Mater Res 11:752–759

    Article  Google Scholar 

  • Tsukamoto Y, Yamaguchi H, Yanagisawa M (1987) Mechanical properties of thin films: measurements of ultramicroindentation hardness, Young’s modulus and internal stresses. Thin Solid Films 154:171–181

    Article  Google Scholar 

  • Valli J (1986) A review of adhesion test method for thin hard coatings. J Vac Sci Technol A4:3007–3014

    Article  Google Scholar 

  • VanLandingham MR, Villarrubia JS, Guthrie WF, Meyers GF (2001) Nanoindentation of polymers: an overview. Macromol Symp 167:15–43

    Article  Google Scholar 

  • Venkataraman S, Kohlstedt DL, Gerberich WW (1992) Microscratch analysis of the work of adhesion for Pt thin films on NiO. J Mater Res 1:1126–1132

    Article  Google Scholar 

  • Vinci RP, Vlassak JJ (1996) Mechanical Behavior of thin films. Annu Rev Mater Sci 26:431–462

    Article  Google Scholar 

  • Vitovec FH (1986) Stress and load dependence of microindentation hardness. In: Blau PJ, Lawn BR (eds) Microindentation techniques in materials science and engineering, STP, vol 889. ASTM, Philadelphia, pp 175–185

    Google Scholar 

  • Walker WW (1973) Indentation creep at low homologous temperatures. In: Westbrook JH, Conrad H (eds) The science of hardness testing and its research applications. American Society for Metals, Metals Park, Ohio, pp 258–273

    Google Scholar 

  • Wei G, Bhushan B, Ferrell N, Hansford D (2005) Microfabrication and nanomechanical characterization of polymer MEMS for biological applications. J Vac Sci Technol A 23:811–819

    Article  Google Scholar 

  • Weihs TP, Lawrence CW, Derby CB, Pethica JB (1992) Acoustic emissions during indentation tests. MRS Proc 239:361–370

    Article  Google Scholar 

  • Westbrook JH (1957) Microhardness testing at high temperatures. Proc Am Soc Test Mater 57:873–895

    Google Scholar 

  • Westbrook JH, Conrad H (eds) (1973) The science of hardness and its research applications. American Soc. Metals, Metals Park

    Google Scholar 

  • Whitehead AJ, Page TF (1992) Nanoindentation studies of thin film coated systems. Thin Solid Films 220:277–283

    Article  Google Scholar 

  • Wierenga PE, Franken AJJ (1984) Ultramicroindentation apparatus for the mechanical characterization of thin films. J Appl Phys 55:4244–4247

    Article  Google Scholar 

  • Wierenga PE, van der Linden JHM (1986) Quasistatic and Dynamic Indentation Measurements on Magnetic Tapes. In: Bhushan B, Eiss NS (eds) Tribology and Mechanics of Magnetic Storage Systems, vol. 3. ASLE, Park Ridge, pp 31–37

    Google Scholar 

  • Williams VS, Landesman AL, Shack RV, Vukobratovich D, Bhushan B (1988) In situ microviscoelastic measurements by polarization-interferometric monitoring of indentation depth. Appl Opt 27:541–546

    Article  Google Scholar 

  • Wu TW (1991) Microscratch and load relaxation tests for ultra-thin films. J Mater Res 6:407–426

    Article  Google Scholar 

  • Wu TW, Hwang C, Lo J, Alexopoulos P (1988) Microhardness and microstructure of ion-beam-sputtered, nitrogen doped NiFe films. Thin Solid Films 166:299–308

    Article  Google Scholar 

  • Wu TW, Shull AL, Berriche R (1991) Microindentation fatigue tests on submicron carbon films. Surf Coat Technol 47:696–709

    Article  Google Scholar 

  • Yanagisawa M, Motomura Y (1987) An ultramicro indentation hardness tester and its application to thin films. Lub Eng 43:52–56

    Google Scholar 

  • Young WC, Budynas RG, Sadegh AM (2012) Roark’s formulas for stress and strain, 8th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, B. Depth-sensing nanoindentation measurement techniques and applications. Microsyst Technol 23, 1595–1649 (2017). https://doi.org/10.1007/s00542-017-3372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3372-2

Keywords

Navigation