Skip to main content

Advertisement

Log in

Volcanoes and climate: the triggering of preboreal Jökulhlaups in Iceland

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Early Holocene (12–8.2 cal ka) deglaciation and pulsed warming was associated in Iceland with two major generations of jökulhlaups around the Vatna ice-cap (Vatnajökull), at ca 11.4–11.2 cal ka and ca 10.4–9.9 cal ka, and major tephra emissions from the Grímsvötn and Bárðarbunga subglacial volcanoes. The earliest flood events were recorded inland during the Middle Younger Dryas and their deposits were overlain by the Early Preboreal Vedde Ash (11.8 cal ka). The first Holocene flood events (ca 11.4–11.2 cal ka) are issued from a glacial advance. The second, and major, set of floods was partly driven by the Erdalen cold events and advances (10.1–9.7 10Be ka) initially issued from the Bárðarbunga (10.4, 10.1–9.9 ka) and Grímsvötn volcanoes (Saksunarvatn tephra complex, ca. 10.2–9.9 cal ka). These floods were also fed by the residual glacio-isostatic depressions below the Vatnajökull that enabled the storage of meltwaters in large subglacial lakes or aquifers until ca. 9.3 cal ka. This storage was enhanced by ice-damming and permafrost, especially during the twinned Erdalen events. Due to the glacio-isostatic rebound, the general slope was nearly flat, and the valley was partly filled with sediments until ca 10.8 cal ka. Temporary lacustrine deposits in this valley resulted from the very broad splay of waters as for the ca 11.2 cal ka and ca 10.1–9.9 cal ka flood, due to regional permafrost. These floods had a potential duration of several months as they were mostly fed by climate-driven meltwater. The maximal volume evacuated by these events did not greatly exceed 1 × 106 m3 s−1 from the flood-affected transverse profile of the valleys that remain partly filled with sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int 181:1510–1524. https://doi.org/10.1111/j.1365-246X.2010.04603.x

    Article  Google Scholar 

  • Alho P (2003) Land cover characteristics in NE Iceland with special reference to jökulhlaup geomorphology. Geogr Ann A 3–4:213–227

    Google Scholar 

  • Alho P, Roberts M, Käyhkö J (2007) Estimating the inundation area of a massive, hypothetical jökulhlaup from northwest Vatnajökull, Iceland. Nat Haz 41:21–42

    Google Scholar 

  • Andrés N, Palacios D, Tanarro LM, Fernández JM (2016) The origin of glacial alpine landscape in Tröllaskagi peninsula (North Iceland). Cuadernos Invest Geogr 42(2):341–368. https://doi.org/10.18172/cig.2935

    Article  Google Scholar 

  • Andrès N, Palacios D, Sæmundsson Þ, Brynjólfsson S, Fernández-Fernández JM (2019) The rapid deglaciation of the Skagafjörður fjord, northern Iceland. Boreas 48:92–106. https://doi.org/10.1111/bor.12341 (ISSN 0300-9483)

    Article  Google Scholar 

  • Andresen CS, Bjorck S, Bennike O, HeinemeierJ KB (2000) What do Δ14C changes across the Gerzensee oscillation/GI-1b event imply for deglacial oscillations. J Quat Sci 15:203–214

    Google Scholar 

  • Baynes ERC, Ml A, Niedermann S, Kirstein LA, Dugmore AJ, Naylor M (2015) Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland. PNAS 112:2355–2360

    Google Scholar 

  • Benediktsson ÍÖ (2012) Polyphase structural evolution of a fine-grained, fold-dominated end moraine, Brúarjökull surge-type glacier, Iceland. Jökull 62:167–183

    Google Scholar 

  • Benediktsson ÍÖ, Schomacker A, Johnson MD, Geiger AJ, Ingólfsson Ó, Guðmundsdóttir ER (2015) Architecture and structural evolution of an early Little Ice Age terminal moraine at the surge-type glacier Múlajökull, Iceland. J Geophys Res Earth Surf 120:1895–1910. https://doi.org/10.1002/2015JF003514

    Article  Google Scholar 

  • Benn DI, Evans DJA (2011) Glaciers and glaciation, 2nd edn. Hodder Education, London

    Google Scholar 

  • Benn DI, Fowler AC, Hewitt I, Sevestre H (2019) A general theory of glacier surges. J Glaciol 65(253):701–716. https://doi.org/10.1017/jog.2019.62

    Article  Google Scholar 

  • Birks H, Gulliksen S, Haflidalson H, Mangerud J et al (1996) New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from Western Norway. Quatern Res 45:119–127

    Google Scholar 

  • Björck S, Rundgren M, Ingὀlfsson O, Funder S (1997) The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. Quaternary Sci 12:455–465

    Google Scholar 

  • Björnsson H (1974) Explanation of jökulhlaups from Grímsvötn, Vatnajökull, Iceland. Jökull 24:1–25

    Google Scholar 

  • Björnsson H (1992) Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann Glaciol 16:95–106

    Google Scholar 

  • Björnsson H (1998) Hydrological characteristics of the drainage system beneath a surging glacier. Nature 395:771–774

    Google Scholar 

  • Björnsson H (2002) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Change 35:255–271

    Google Scholar 

  • Björnsson H (2017) The Glacier of Iceland, Translation of “Jöklar á Íslandi” 2009. Adv Quatern Sci 20:20

    Google Scholar 

  • Björnsson H, Einarsson P (1990) Volcanoes beneath Vatnajökull, Iceland: evidence from radio echo-sounding, earthquakes and jökulhlaups. Jökull 140:148–169

    Google Scholar 

  • Björnsson H, Kristmannsdóttir H (1984) The Grímsvötn geothermal area, Vatnajökull, Iceland. Jökull 34:25–50

    Google Scholar 

  • Björnsson H, Pálsson F, Sigurđsson O, Flowers GE (2003) Surges of glaciers in Iceland. Ann Glaciol 36:82–90

    Google Scholar 

  • Bond GG, Kromer B, Beer J, Muscheler R, Evans M, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent Solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Google Scholar 

  • Bos JAA, van Geel B, van der Plicht J, Bohncke SJP (2007) Preboreal climate oscillations in Europe: wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records. Quat Sci Rev 26:1927–1950

    Google Scholar 

  • Boulton GS, van der Meer JJM, Beets DJ, Hart J, Ruegg GH (1999) The sedimentary and structural evolution of a recent Push moraine complex: Ȯstrømbreen, Spitsbergen. Quat Sci Rev 18:339–371

    Google Scholar 

  • Brader MD, Lloyd JM, Bentley MJ, Newton AJ (2015) Lateglacial to Holocene relative sea-level changes in the Stykkisholmur area, northern Snæfellsnes, Iceland. J Quat Sci 30:497–507

    Google Scholar 

  • Bronk RC, Albert PG, Blockley SPE, Hardiman M, Housley RA, Lane CS et al (2015) Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat Sci Rev 118:18–32. https://doi.org/10.1016/j.quascirev.2014.11.007

    Article  Google Scholar 

  • Carling PA (2013) Fresh water megaflood sedimentation: what can we learn about generic processes. Earth Sci Rev 125:87–113

    Google Scholar 

  • Carrivick JL (2007) Hydrodynamics and geomorphic work of jökulhlaups (glacial outburst floods) from Kverkfjöll volcano, Iceland. Hydrol Process 21:725–740

    Google Scholar 

  • Carrivick JL, Russell AJ, Rushmer EL, Tweed FS, Marren PM, Deeming KR, Lowe HG (2009) Geomorphological evidence towards a de-glacial control on volcanism. Earth Surf Process Landf 34:1164–1178

    Google Scholar 

  • Carrivick JL, Tweed FS, Carling PA, Alho P, Marren PM, Staines K, Russell AJ, Rushmer EL, Duller R (2013) Discussion of field evidence and hydraulic modelling of a large Holocene jökulhlaup at Jökulsá á Fjöllum channel, Iceland’ by Douglas Howard, Sheryl Luzzadder-Beach and Timothy Beach, 2012. Geomorphology 201:512–519

    Google Scholar 

  • Clague JJ, Barendregt R, Enkin RJ, Foit FF (2003) Paleomagnetic and tephra evidence for tens of Missoula floods in southern Washington. Geology Geol Soc Am 31:247–250

    Google Scholar 

  • Condron A, Winsor P (2012) Meltwater routing and the Younger Dryas. Proc Natl Acad Sci US 109:19928–19933. https://doi.org/10.1073/pnas.1207381109

    Article  Google Scholar 

  • Doyle S, Hubbard A, van de Wal R, Box J, van As D, Scharrer K, Meierbachtol T, Smeets P et al (2015) Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat Geol. https://doi.org/10.1038/NGEO2482

    Article  Google Scholar 

  • Eason D, Sinton JM, Grönvold K, Kurz M (2015) Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland. B Volcanol 77:47. https://doi.org/10.1007/s00445-015-0916-0

    Article  Google Scholar 

  • Eiríksson J, Knudsen KL, Haflidason H, Henriksen P (2000) Late-glacial and Holocene palaeoceanography of the North Icelandic shelf. J Quat Sci 15:23–42

    Google Scholar 

  • Eksinchol I, Rudge JF, Maclennan J (2019) Rate of melt ascent beneath Iceland from the magmatic response to deglaciation. Geochem Geophys Geosyst 20:2585–2605

    Google Scholar 

  • Elíasson S (1977) Molar um Jökulsarhlaup og Asbyrgi. Natturufæjingurinn 47:160–179

    Google Scholar 

  • Fard AM (2002) Large dead-ice depressions in flat-topped eskers: evidence of a Preboreal jökulhlaup in the Stockholm area, Sweden. Glob Planet Change 35:273–295

    Google Scholar 

  • Fitzpatrick AAW, Hubbard AL, Box JE, Quincey DJ, van As D, Mikkelsen APB, Doyle SH, Dow CF, Hasholt B, Jones GA (2014) A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier. West Greenl Cryosphere 8(107–121):2014. https://doi.org/10.5194/tc-8-107-2014

    Article  Google Scholar 

  • Flowers GE, Björnsson H, Pálsson F (2003) New insights into the subglacial and periglacial hydrology of Vatnajökull, Iceland, from a distributed physical model. J Glaciol 49(165):257–270

    Google Scholar 

  • GAPHAZ (2017) Assessment of glacier and permafrost hazards in mountain regions—technical guidance document. Prepared by Allen S, Frey H, Huggel C et al. Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the IACS and IPA. Zurich, Switzerland/Lima, Peru

  • Geirsdóttir Á, Hardardóttir J, Sveinbjörnsdóttir ÁE (2000) Glacial extent and catastrophic meltwater events during the deglaciation of Southern Iceland. Quat Sci Rev 19:1749–1761

    Google Scholar 

  • Geirsdóttir A, Miller GH, Axford Y, Olafsdóttir S (2009) Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quat Sci Rev 28(21–22):2107–2118

    Google Scholar 

  • Goslar T, Arnold M, Tisnerat-Laborde N, Czernik J, Wieckowski K (2000) Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403:877–880

    Google Scholar 

  • Grönvold K, Oskarsson N, Johnsen SJ, Clausen HB, Hammer CU, Bond G, Bard E (1995) Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land based sediments. Earth Planet Sci Lett 135:149–155

    Google Scholar 

  • Guðmundsdóttir ER, Larsen GD, Eiríksson J (2012) Tephra stratigraphy on the North Icelandic shelf: extending tephrochronology into marine sediments off North Iceland. Boreas 41:718–734

    Google Scholar 

  • Guðmundsdóttir ER, Larsen GD, Björck S, Ingólfsson Ó, Striberger J (2016) A new high-resolution Holocene tephra stratigraphy in eastern Iceland: improving the Icelandic and North Atlantic tephrochronology. Quat Sci Rev 150:234–249. https://doi.org/10.1016/j.quascirev.2016.08.011

    Article  Google Scholar 

  • Guðmundsson Á (2000) Frerafjöll, Urðarbingir á Tröllaskaga. MSc thesis, University of Iceland, Reykjavik, Iceland

  • Guðmundsson MT, Björnsson H, Pálsson F (1995) Changes in jökulhlaup sizes in Grímsvötn, Vatnajökull, Iceland, 1934–91, deduced from in-situ measurements of subglacial lake volume. J Glaciol 41(38):263–272

    Google Scholar 

  • Guðmundsson MT, Sigmundsson F, Björnsson H (1997) Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389(6654):954–957

    Google Scholar 

  • Gylfadóttir SS, ÞórarinsdóttirT, Pagneux E, Björnsson BB (2017) Hermun jökulhlaupa í Jökulsá á Fjöllum með GeoClaw. Icelandic Meteorologic Office, VÍ 2017-004 (ISSN 1670-8261)

  • Halldórsson SA, Oskarsson N, Grönvold K, Sigurdsson G, Sverrisdóttir G, Steinthorsson S (2008) Isotopic heterogeneity of the Thjorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone, Iceland. Chem Geol 255(1–3):305–316

    Google Scholar 

  • Harning DJ, Geirsdóttir Á, Miller GH, Zalzal K (2016) Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland. Quat Sci Rev 153:192–198

    Google Scholar 

  • Harrison S, Whalley B, Anderson E (2008) Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. J Quat Sci 23:287–304

    Google Scholar 

  • Hartley ME, Thordarson T, de Joux A (2016) Postglacial eruptive history of the Askja region, North Iceland. Bull Volcanol 78:28. https://doi.org/10.1007/s00445-016-1022-7

    Article  Google Scholar 

  • Hjartardóttir ÁR, Einarsson P (2017) Eru Hljóðaklettar og Rauðhólar í Jökulsárgljúfrum gervigígar? Haustráðstefna Jarðfræðafélags Íslands 17:7–8

    Google Scholar 

  • Hjartarson Á (2003) The Skagafjörður unconformity, north Iceland, and its geological history. PhD Thesis, Geol. Museum, Univ Copenhagen

  • Hoskuldsson A, Sparks RSJ, Carroll MR (2006) Constraints on the dynamics of subglacial basalt eruptions from geological and geochemical observations at Kverkfjoll, E Iceland. B Volcanol 68:689–701. https://doi.org/10.1007/s00445-005-0043-4

    Article  Google Scholar 

  • ICS (2018) International commission for stratigraphy—international chronostratigraphic chart v2018/07. https://www.stratigraphy.org/

  • Ingólfsson Ó, Björck S, Haflidason H, Rundgren M (1997) Glacial and climatic events in iceland reflecting regional north atlantic climatic shifts during the Pleistocene-Holocene transition. Quat Sci Rev 16:1135–1144

    Google Scholar 

  • Jennings A, Syvitski J, Gerson L, Grönvold K, Geirsdóttir Á, Hardardóttir J, Andrews J, Hagen S (2000) Chronology and paleoenvironments during the Late Weichselian deglaciation of the Southwest Iceland Shelf. Boreas 29:167–183

    Google Scholar 

  • Jóhannsdóttir GE (2007) Mid-Holocene to late glacial tephrochronology in west Iceland as revealed in three lacustrine environments. MS thesis, Univ Iceland, Reykjavík

  • Jonásson K (1994) Rhyolite volcanism in the Krafla central volcano, north-east Iceland. B Volcanol 56:516–528

    Google Scholar 

  • Jones G, Davies S, Farr G, Bevan J (2017) Identification of the Askja-S Tephra in a rare turlough record from Pant-y-Llyn, south Wales. Proc Geol Assoc 128(4):523–530. https://doi.org/10.1016/j.pgeola.2017.05.010

    Article  Google Scholar 

  • Jull M, McKenzie D (1996) The effect of deglaciation on mantle melting beneath Iceland. J Geophys Res 107:21815–21828

    Google Scholar 

  • Kaldal I, Víkingsson S (1990) Early Holocene deglaciation in central Iceland. Jökull 40:51–66

    Google Scholar 

  • Kaldal I, Víkingsson S (2000) Jarðgrunnskort af Eyjabökkum. Orkustofnun report OS-2000/068 (Reykjavík, Iceland, p 10)

  • Kirkbride MP, Dugmore AJ, Brazier V (2006) Radiocarbon dating of mid-Holocene megaflood deposits in the Jökulsá á Fjöllum, north Iceland. Holocene 16(4):605–609

    Google Scholar 

  • Knudsen O (1995) Concertina eskers, Brúarjökull, Iceland: an indicator of surge-type glacier behaviour, December 1995. Quat Sci Rev 14:487–493. https://doi.org/10.1016/0277-3791(95)00018-K

    Article  Google Scholar 

  • Knudsen O, Marren PM (2002) Sedimentation in a volcanically dammed valley, Brúarjökull. Quat Sci Rev 21:1677–1692. https://doi.org/10.1016/S0277-3791(01)00144-5

    Article  Google Scholar 

  • Kobashi T, Menviel L, Jeltsch-Thömmes A, Vinther BM, Box JE, Muscheler R et al (2017) Volcanic influence on centennial to millennial Holocene Greenland temperature change. Nat Sci Rep 7:1441. https://doi.org/10.1038/s41598-017-01451-7

    Article  Google Scholar 

  • Koren H, Svendsen JI, Mangerud J, Furnes H (2008) The Dimna Ash—a 12.8 14C ka-old volcanic ash in Western Norway. Quat Sci Rev 27:85–94

    Google Scholar 

  • Lacasse C, Carey S, Sigurdsson H (1998) Volcanogenic sedimentation in the Iceland Basin: influence of subaerial and subglacial eruptions. J Volcanol Geotherm Res 83:47–73

    Google Scholar 

  • Langdon PG, Leng MJ, Holmes N, Caseldine CJ (2010) Lacustrine evidence of early-Holocene environmental change in northern Iceland: a multiproxy palaeoecologyand stable isotope study. Holocene 20:205–214

    Google Scholar 

  • Larsen G, Eiríksson J (2007) Late Quaternary terrestrial tephrochronology of Iceland, frequency of explosive eruptions, type and volume of tephra deposits. J Quat Sci 23:109–120. https://doi.org/10.1002/jqs.1129

    Article  Google Scholar 

  • Larsen G, Eiríksson J, Knudsen KL, Heinemeier J (2002) Correlation of late Holocene terrestrial and marine tephra markers in North Iceland. Implications for reservoir age changes and linking land-sea chronologies in the northern North Atlantic. Polar Res 21:283–290

    Google Scholar 

  • Larsen DJ, Mille GH, Geirsdóttir A, Olafsdóttir S (2012) Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítarvatn, central Iceland. Quat Sci Rev 39:14–25

    Google Scholar 

  • Le Breton E, Dauteuil O, Biessy G (2010) Post-glacial rebound of Iceland during the Holocene. J Geol Soc Lond 167:417–432. https://doi.org/10.1144/0016-76492008-126.417

    Article  Google Scholar 

  • Licciardi JM, Kurz MD, Curtice JM (2007) Glacial and volcanic history of Icelandic table—mountains from cosmogenic 3He exposure ages. Quat Sci Rev 6:1529–1546. https://doi.org/10.1016/j.epsl.2006.03.016

    Article  Google Scholar 

  • Lind E, Wastegård S (2011) Tephra horizons contemporary with short early Holocene climate fluctuations: new results from the Faroe Islands. Quatern Intern 246:157–167

    Google Scholar 

  • Lønne I (2016) A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard). Quat Sci Rev 132:74–100. https://doi.org/10.1016/j.quascirev.2015.11.0090

    Article  Google Scholar 

  • Maclennan J, Jull M, McKenzie D, Slater L, Grönvold K (2002) The link between volcanism and deglaciation in Iceland. Geochem Geophys Geosyst 3:1062. https://doi.org/10.1029/2001GC000282

    Article  Google Scholar 

  • Maizels J (1991) The origin and evolution of Holocene sandur deposits in areas of jökulhlaup drainage, Iceland. In: Maizels J, Caseldine C (eds) Environmental change in Iceland: past and present. Kluwer Academic Publishing, Dordrecht, pp 267–279

    Google Scholar 

  • Maizels J (1997) Jökulhlaup deposits in proglacial areas. Quat Sci Rev 16:793–819

    Google Scholar 

  • Mangerud J, Furnes H, Johansen J (1986) A 9000 year ash bed on the Faroe Islands. Quaternary Res 26:262–265

    Google Scholar 

  • Matero SO, Gregoire LJ, Ivanovic RF, Tindall JC, Haywood AM (2017) The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet Sci Lett 473:205–214. https://doi.org/10.1016/j.epsl.2017.06.011

    Article  Google Scholar 

  • Matthews JA, Shakesby RA, Schnabel C, Freeman S (2008) Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway I: testing the method and confirmation of the date of the Erdalen Event (c. 10 ka) at its type-site. Holocene 18:1155–1164. https://doi.org/10.1177/0959683608096585

    Article  Google Scholar 

  • Meier MF, Post AS (1969) What are glacier surges? Can J Earth Sci 6:807–817

    Google Scholar 

  • Möller R, Möller M, Björnsson H, Guðmundsson S, Pálsson F, Oddsson B, Kukla P, Schneider C (2013) MODIS-derived albedo changes of Vatnajökull (Iceland) due to tephra deposition from the 2004 Grímsvötn eruption. Int J Appl Earth Obs 2:256–269

    Google Scholar 

  • Norðdahl H, Pétursson HG (2005) Relative sea-level changes in Iceland, new aspects of the Weichselian deglaciation of Iceland. In: Caseldine C, Russell A, Harðardóttir J, Knudsen O (eds) Iceland, modern processes and past environments. Elsevier, Amsterdam, pp 25–78

    Google Scholar 

  • Norðdahl H, Ingólfsson O, Vogler ED, Steingrímsson BO, Hjartarson Á (2019) Glacio-isostatic age modelling and Late Weichselian deglaciation of the Lögurinn basin, East Iceland. Boreas 41:563–580. https://doi.org/10.1111/bor.12366

    Article  Google Scholar 

  • NGRIP Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Google Scholar 

  • Óladóttir BA, Sigmarsson O, Larsen G, Devidal J-L (2011a) Provenance of basaltic tephras from Vatnajökull subglacial volcanoes, Iceland as determined by major- and trace-element analyses. Holocene 21:1037–1048

    Google Scholar 

  • Óladóttir BA, Larsen G, Sigmarsson O (2011b) Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland. B Volcanol 7:1187–1208

    Google Scholar 

  • Olszewski A, Weckwerth P (1999) The morphogenesis of kettles in the Höfðabrekkujökull forefield, Mýrdalssandur, Iceland. Jökull 47(71):88

    Google Scholar 

  • Ott F, Wulf S, Serb J, Słowiński M, Obremska M, Tjallingii R, Błaszkiewicz M, Brauer A (2016) Constraining the time span between the Early Holocene Hässeldalen and Askja-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. J Quat Sci 31:103–113. https://doi.org/10.1002/jqs.2844

    Article  Google Scholar 

  • Pagli C, Sigmundsson F, Pedersen R, Einarsson P, Arnadóttir T, Feigl KL (2007) Crustal deformation associated with the 1996 Gjalp subglacial eruption, Iceland: InSAR studies in affected areas adjacent to the Vatnajökull ice cap. Earth Planet Sci Lett 259:24–33

    Google Scholar 

  • Patton H, Hubbard A, Bradwell T, Schomacker A (2017) The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet. Earth Sci Rev 166:223–245

    Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther B, Clausen HB et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:1–15

    Google Scholar 

  • Rasmussen TL, Thomsen E, Nielsen T, Wastegård S (2011) Atlantic surface water inflow to the Nordic seas during the Pleistocene–Holocene transition (mid–late Younger Dryas and Pre-Boreal periods, 12,450–10,000 a BP). J Quat Sci 26:723–733

    Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB et al (2014) Stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28

    Google Scholar 

  • Reverso T, Vandemeulebrouck J, Jouanne F, Pinel V, Villemin T, Sturkell E, Bascou P (2014) A two-magma chamber model as a source of deformation at Grimsvötn Volcano, Iceland. J Geophys Res 119:4666–4683

    Google Scholar 

  • Roberts MJ, Russell AJ, Tweed FS, Knudsen Ó (2000) Ice fracturing during Jokulhlaups: Implications for englacial floodwater routing and outlet development. Earth Surf Process Landf 25:1429–1446. https://doi.org/10.1002/1096-9837(200012)25

    Article  Google Scholar 

  • Rudoy AN, Baker VR (1993) Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia. Sedim Geol 85:53–62

    Google Scholar 

  • Rushmer EL (2006) Sedimentological and geomorphological impacts of the jökulhlaup (glacial outburst flood) in January 2002 at Kverkfjöll, northern Iceland. Geogr Ann A 20:1–11

    Google Scholar 

  • Russell AJ, Knudsen Ó (1999) An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland. Sedim Geol 127(1–2):1–10

    Google Scholar 

  • Russell AJ, Knight PG, Van Dijk TAGP (2001) Glacier surging as a control on the development of proglacial, fluvial landforms and deposits, Skeidararsandur, Iceland. Glob Planet Change 28:163–174

    Google Scholar 

  • Russell AJ, Tweed FS, Knudsen O, Roberts MJ, Harris TD, Marren PM (2002) Impact of the July 1999 jökulhlaup on the proximal river Jökulsa a Solheimasandi, Myrdalsjökull glacier, southern Iceland. IAHS Publ Nr 271:249–254

    Google Scholar 

  • Sæmundsson K (1973) Straumraðkajar klappir ı´ kringum Asbyrgi. Natturufæjingurinn 43:52–60

    Google Scholar 

  • Sæmundsson K (1992) Geology of the Krafla system. In: Gardarsson A, Einarsson A (eds) Nfitttira Myvatns, vol 61ag. Hid Islenska Nattirufraedif, Reykjav, pp 25–95

    Google Scholar 

  • Sæmundsson K, Hjartarson Á, Kaldal I, Sigurgeirsson MÁ, Kristinsson SG, Víkingsson S (2012) Geological map of the Northern Volcanic Zone, Iceland. Northern Part. 1:100,000 (Iceland GeoSurvey, Reykjavik, Iceland)

  • Schomacker A, Benediktsson IO, Ingólfsson O (2014) The Eyjabakkajökull glacial landsystem, Iceland: geomorphic impact of multiple surges. Geomorphology 218:98–107. https://doi.org/10.1016/j.geomorph.2013.07.005

    Article  Google Scholar 

  • Sharp M (1985) Sedimentation and stratigraphy at Eyjabakkajökull—an Icelandic surging glacier. Quatern Res 24:268–284

    Google Scholar 

  • Sigurðsson H, Sparks RSJ (1978) Rifting episode in North Iceland in 1874–1875 and the eruptions of Askja and Sveinagjá. B Volcanol 41:149–167

    Google Scholar 

  • Sigurgeirsson MÁ (2016) Eldar í Öskjukerfi fyrir um 11 þúsund árum (Volcanic episode in the Askja volcanic system 11.000 years ago). Náttúrufræðingurinn 86(3–4):76–90

    Google Scholar 

  • Sigurgeirsson MÁ, Hjartarson Á, Kaldal I, Sæmundsson K, Kristinsson GS, Víkingsson S (2015) Geological map of the Northern Volcanic Zone, Iceland. Southern Part. 1:100,000. Iceland GeoSurvey, Reykjavík

    Google Scholar 

  • Sinton J, Grönvold K, Sæmundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem Geophys Geosyst 6:12. https://doi.org/10.1029/2005GC001021

    Article  Google Scholar 

  • Slater L, Jull M, McKenzie D, Grönvold K (1998) Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone. Earth Planet Sci Lett Lett 164:151–154

    Google Scholar 

  • Snorrason A, Jὀnsson P, Pálsson S, Àrnason S, Sigurðsson O, Vikingsson S, Sigurðsson À, Zὀphὀniasson S (1997) The jökulhlaup in Skeiðarärsandur in the fall of 1996—extent of inundation, discharge and sediment transport) (in Icelandic). In: Haraldsson II (ed) Vatnajökull—Gos og Hlaup 1996 (Vatnajökull eruption and jökulhlaup 1996). The Icelandic Public Road Admin, Reykjavik, pp 79–137

    Google Scholar 

  • Striberge J, Björck S, Benediktsson ÍÖ, Snowball I, Uvo CB, Ingólfsson Ó, Kjær KH (2011) Climatic control of the surge periodicity of an Icelandic outlet glacier. J Quat Sci 26:561–565

    Google Scholar 

  • Striberger S, Björck S, Holmgren L, Hamerlik L (2012) The sediments of Lake Lögurinn—a unique proxy record of Holocene glacial meltwater variability in eastern Iceland. Quat Sci Rev 38:76–88

    Google Scholar 

  • Stuiver M, Braziunas TF (1989) Atmospheric 14C and century-scale solar oscillations. Nature 338:1041–1083. https://doi.org/10.1038/338405a0

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–1151

    Google Scholar 

  • Sund M, Eiken T, Hagen JO, Kääb A (2009) Svalbard surge dynamics derived from geometric changes. Ann Glaciol 50(52):50–60

    Google Scholar 

  • Thorarinsson S (1969) Glacier surges in Iceland with special reference to the surges of Bruarjokull. Can J Earth Sci 6(4 Part 2):875–882

    Google Scholar 

  • Thordarson T (2014) The widespread ~10ka Saksunarvatn tephra is not a product single eruption American Geophysical Union, Fall Meeting 2014, abstract V24B-04612

  • Tómasson H (1973) Hamfarahlaup i Jökulsá a Fjöllum. Náttúrufraiding Urinn 43:12–34

    Google Scholar 

  • Van Vliet-Lanoë B, Van Cauwenberge AS, Bourgeois O, Dauteuil O, Schneider JL (2001) A candidate for the last interglacial record in northern Iceland: the Syðra formation. Stratigraphy and sedimentology. C R Geosci 332:577–584

    Google Scholar 

  • Van Vliet-Lanoë B, Bourgeois O, Dauteuil O, Embry JC, Guillou H, Schneider JL (2005) Deglaciation and volcano-seismic activity in Northern Iceland: Holocene and Early Eemian (The Syðra Formation). Geodin Acta 18:81–100

    Google Scholar 

  • Van Vliet-Lanoë B, Guðmundsson Á, Guillou H, Duncan RA, Genty D, Ghaleb B, Gouy S, Récourt P, Scaillet S (2007) Limited glaciation and very early deglaciation in central Iceland: implications for climate change. CR Geosci 339:1–12

    Google Scholar 

  • Van Vliet-Lanoë B, Guðmundsson Á, Guillou H, van Loon AJ, De Vleeschouwer F (2010) Glacial terminations II and I as recorded in NE Iceland. Geologos 16:201–223

    Google Scholar 

  • Van Vliet-Lanoë B, Schneider JL, Guðmundsson Á, Guillou H, Nomade S, Chazot G, Liorziou C, Guégan S (2018) Eemian estuarine record forced by glacio-isostasy (S Iceland)—link with Greenland and deep sea records. Can J Earth Sci 55(2):154–171. https://doi.org/10.1139/cjes-2017-0126

    Article  Google Scholar 

  • Van Vliet-Lanoë B, Bergerat F, Allemand P, Innocent C, Guillou H, Cavailhes T, Guðmundsson Á, Chazot G, Schneider JL, Grandjean P, Liorzou C, Passot S (2019a) Tectonism and volcanism enhanced by deglaciation events in southern Iceland. Quatern Res. https://doi.org/10.1017/qua.2019.68

    Article  Google Scholar 

  • Van Vliet-Lanoë B, Pissart A, Baize S, Brulhet J, Ego E (2019b) Evidence of multiple thermokarst events in northeastern France and southern Belgium during the two last glaciations. A discussion on ‘Features caused by ground ice growth and decay in Late Pleistocene fluvial deposits, Paris basin, France’ (Bertran et al. 2018). Geomorphology 327:613–628

    Google Scholar 

  • Voelker AHL, Haflidason H (2015) Refining the Icelandic tephrachronology of the last glacial period—the deep-sea core PS2644 record from the southern Greenland Sea. Glob Planet Change 131:35–62

    Google Scholar 

  • Vogfjörd KS, Jakobsdóttir SS, Guðmundsson GB, Roberts MJ, Agustsson K, Arason T et al (2005) Forecasting and monitoring a subglacial eruption in Iceland. EOS 86:245–248

    Google Scholar 

  • Vonmoos M, Beer J, Muscheler R (2006) Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. J Geophys Res 111:A10105. https://doi.org/10.1029/2005JA011500

    Article  Google Scholar 

  • Waitt RB (1985) Case for periodic, colossal jökulhlaups from Pleistocene glacial Lake Missoula. Geol Soc Am Bull 96(10):1271–1286

    Google Scholar 

  • Waitt RB (2002) Great Holocene floods along Jökulsá á Fjöllum, north Iceland. Spec Publ Int Ass Sedimentol 32:37–51

    Google Scholar 

  • Waller RI, Murton JB, Kristensen L (2012) Glacier-permafrost interactions: processes, products and glaciological implications. Sed Geol 255–256:1–28. https://doi.org/10.1016/j.sedgeo.2012.02.005

    Article  Google Scholar 

  • Wohlfarth B, Blaauw M, Daviess SM, Andersson M, Wastegård S, Hormes A, Possnert G (2006) Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probabilityy methods. J Quartern Sci 21:321–334. https://doi.org/10.1002/jqs.996

    Article  Google Scholar 

  • Wylie J, Voight B, Whitehead J (2000) Instability of magma flow from volatile-dependant viscosity. Science 285:1883–1885

    Google Scholar 

Download references

Acknowledgements

This study was funded by the French Polar Institute Paul-Emile Victor (IPEV), Arctic Research Program number 316 (ICPROCI I, II and III), which covered the fieldwork in Iceland. We especially thank Kristjan Sæmundsson for providing the original dating for the Kraþla caldera and the Vatnajökull National Park to have allowed investigations and samplings in protected natural areas. We also thank the students Anne-Sophie Van Cauwenberge, Audrey Wayolle, and Guillaume Gosselin for their assistance during fieldwork in 2004, 2006, and 2008. We also gratefully thank a reviewer for all his positive comments and suggestion of improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Van Vliet-Lanoë.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vliet-Lanoë, B., Knudsen, O., Guðmundsson, A. et al. Volcanoes and climate: the triggering of preboreal Jökulhlaups in Iceland. Int J Earth Sci (Geol Rundsch) 109, 847–876 (2020). https://doi.org/10.1007/s00531-020-01833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01833-9

Keywords

Navigation