Skip to main content
Log in

A bivariate stochastic Gamma diffusion model: statistical inference and application to the joint modelling of the gross domestic product and CO2 emissions in Spain

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper examines the use of a bivariate stochastic Gamma diffusion model to represent the co-evolution of the stochastic variables CO2 emission and gross domestic product (GDP) in Spain. These variables were selected in view of the strong correlation between them. We compare the results obtained to those provided by the Gamma one-dimensional process with exogenous factors, taking CO2 emission as an endogenous variable and GDP as the exogenous factor. This methodology was applied to a real case, with two dependent variables: firstly, GDP and CO2 emission from the combustion of fossil fuels (gas, liquid and solid fuels) and cement manufacture in Spain. And secondly, with GDP and CO2 emission from the consumption and flaring of natural gas in Spain. The joint dynamic evolution of these factors is represented by the proposed model. In addition, a comparison is made with results obtained from fitting the data using the Gamma diffusion process with external factors, in which GDP is the variable containing the external information. This implementation was carried out on the basis of annual observations of the variables over the periods 1986–2008 and 1986–2009, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait-Sahalia Y (2002) Maximum-likelihood estimation of discretely-sampled diffusion: a closed-form approximation approach. Econometrica 70:223–262

    Article  Google Scholar 

  • Ait-Sahalia Y (2008) Closed-form likelihood expansions for multivariate diffusions. Ann Stat 36:906–937

    Article  Google Scholar 

  • Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. Wiley, New York

  • Becker S, Germmer M, Jiang T (2006) Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch Environ Res Risk Assess 20(6):435–444

    Article  Google Scholar 

  • Cantet P, Bacro JN, Arnaud P (2011) Using a rainfall stochastic generator to detect trends in extreme rainfall. Stoch Environ Res Risk Assess 25:429–441

    Article  Google Scholar 

  • Christakos G (2003) Soil behaviour under dynamic loading conditions: experimental procedures and statistical trends. Stoch Environ Res Risk Assess 17(3):175–190

    Article  Google Scholar 

  • Frank TD (2002) Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay. Phys Rev E 66(1):011914

    Article  CAS  Google Scholar 

  • Gutiérrez R, Angulo JM, González A, Pérez R (1991) Inference in lognormal multidimensional diffusion process with exogenous factors: application to modelling in economics. Appl Stoch Models Bus Ind 7:295–316

    Article  Google Scholar 

  • Gutiérrez R, González A, Torres F (1997) Estimation in multivariate lognormal diffusion process with exogenous factors. Appl Stat 4(1):140–146

    Google Scholar 

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2004) Maximum likelihood estimation in multivariate lognormal diffusion process with a vector of exogenous factors. Monografías del Seminario Matemático García de Galdeano 31:337–346. http://www.ugr.es/ramongs/articulosenpdf/jaca2.pdf

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2008a) A bivariate stochastic Gompertz diffusion model: statistical aspects and application to the joint modelling of the gross domestic product and CO 2 emissions in Spain. Environmetrics 19:643–658

    Article  Google Scholar 

  • Gutiérrez R, Gutiérrez Sánchez R, Nafidi A, Merbouha A (2008b) A stochastic diffusion model based on the gamma density: statistical inference. Monografías del Seminario Matemtico Garca de Galdeano 34:117–125. http://www.ugr.es/ramongs/articulosenpdf/2008monografias34.pdf

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2008c) Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch Environ Res Risk Assess 22:57–66

    Article  Google Scholar 

  • Gutiérrez R, Gutiérrez Sánchez R, Nafidi A (2009) The trend of the total stock of the private car-petrol in Spain: stochastic modelling using a new gamma diffusion process. Appl Energy 86:18–24

    Article  Google Scholar 

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2010a) Statistical inference in the stochastic Gamma diffusion process with external information. Monografías del Seminario Matemático García de Galdeano 35:263–270. http://www.ugr.es/ramongs/articulosenpdf/2010monografias35.pdf

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2010b) A bivariate stochastic gamma diffusion model: statistical inference. Monografías del Seminario Matemático García de Galdeano 36:79–88. http://www.ugr.es/ramongs/articulosenpdf/2010monografias36.pdf

  • Gutiérrez R, Gutiérrez-Sánchez R, Nafidi A (2012) Detection, modelling and estimation of the non-linear trends by using a non-homogeneous Vasicek stochastic diffusion. Application to CO2 emissions in Morocco. Stoch Environ Res Risk Assess 26:533–543

    Article  Google Scholar 

  • Ramanathan R (2002) Combining indicators of energy consumption and CO2 emissions: a cross-country comparison. Int J Glob Energy Issues 17(3):214–227

    Google Scholar 

  • Ramanathan R (2006) A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol Forecast Soc Chang 73:483–494

    Article  Google Scholar 

  • Shao Q, Li Z, Xu Z (2010) Trend detection in hydrological time series by segment regression with application to Shiyang River Basin. Stoch Environ Res Risk Assess 24(2):221–233

    Article  Google Scholar 

  • Varughese MM (2013) Parameter estimation for multivariate diffusion systems. Comput Stat Data Anal 57:417–428

    Article  Google Scholar 

  • Xu J, Chen Y, Li W, Yang Y, Hong Y (2011) An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relations with climatic factors. Stoch Environ Res Risk Assess 25:139–150

    Article  Google Scholar 

  • Zehna PW (1966) Invariance of maximum likelihood estimators. Ann Math Stat 37:744

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editor and referees for constructive comments and suggestions. This research work was partially supported by IDI-Spain, Grants FQM 2006-2271 and MTM 2011-28962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Ramos-Ábalos.

Appendix

Appendix

Correlation function can be calculated for different times. When t 0 < s ≤ t and i ≠ j, then:

$$ \varrho(x_i(t), x_j(s))=\frac{\left(e^{(s-t_0)b_{ij}}-1\right)}{\left(e^{(t-t_0)b_{ii}}-1\right)^{1/2}\left(e^{(s-t_0)b_{jj}}-1\right)^{1/2}} $$

for t = s:

$$ \varrho(x_i(t), x_j(t))=\frac{\left(e^{(t-t_0)b_{ij}}-1\right)}{\left(e^{(t-t_0)b_{ii}}-1\right)^{1/2}\left(e^{(t-t_0)b_{jj}}-1\right)^{1/2}}. $$

In the above example, we assume that the significant correlation is that which occurs at equal times, because the CO2 emissions for a given year would logically be related to the GDP for previous years, but are more strongly associated with the GDP for the current year.

Proof

The marginal conditional and non-conditional moments of order r (\({r\in {\mathbb{N}}^{*}}\)) can be obtained from the function generating the random vector

$$ Z(t)=\log\left[x(t)\mid x(s)=x_s\right], $$

which follows the law \({\mathcal{N}}_2\left( \mu(s, t, x_s); (t-s)B\right), \) and is expressed as follows, for \({\lambda\in {\mathbb{R}}^2}\)

$$ {\mathbb{E}}(e^{\lambda'Z(t)})=\exp\left\{ \lambda'\mu(s, t, x_s)+\frac{t-s}{2}\lambda' B\lambda\right\} $$

with

$$ \mu(s, t, x)=\log(x)+ a\log \left(\frac{t}{s}\right) -\left(\beta+\frac{b}{2}\right)(t-s)=\log(x)+\delta (s,t), $$

where

$$ \delta (s,t)=a\log \left(\frac{t}{s}\right) -\left(\beta+\frac{b}{2}\right)(t-s). $$

For particular values of the λ = (0, r)′ or λ = (r, 0)′ (\({r\in {\mathbb{N}}^{*}}\)), we obtain, for example, the marginal conditional trend functions of order r of the process and which have the following form, for i = 1, 2

$$ {\mathbb{E}}\left( x^r_i(t)\mid x(s)=x_{s}\right)= \exp\left(r\mu_i(s, t, x_{s})+\frac{r^2(t-s)}{2} b_{ii}\right) $$

and for λ = (r 1, r 2)′ (\({r_1, r_2 \in {\mathbb{N}}^{*}}\)), we obtain the joint conditional trend of the process

$$ \begin{aligned} {\mathbb{E}}\left( x^{r_1}_1(t)x^{r_2}_2(t)\mid x(s)=x_{s}\right)=\,&\exp\left(r_1\mu_1(s, t, x_{s})+r_2\mu_2(s, t,x_{s})\right. \\ & \left.+\frac{(t-s)}{2}(r^2_1b_{11}+r^2_2b_{22}+2r_1r_2b_{12})\right). \end{aligned} $$

Assuming the initial condition P(x(t 0) = x t_0) = 1, the marginal non conditional trend of the process is expressed as

$$ {\mathbb{E}}\left( x^r_i(t)\right)=\exp\left(r\mu_i(t_0, t, x_{t_0})+\frac{r^2(t-t_0)}{2} b_{ii}\right) $$

and the joint non conditional trend of the process is expressed as

$$ \begin{aligned} {\mathbb{E}}\left( x^{r_1}_1(t)x^{r_2}_2(t)\right)=\,&\exp\left(r_1\mu_1(t_0, t, x_{t_0})+r_2\mu_2(t_0, t,x_{t_0})\right. \\ &\left. +\frac{(t-t_0)}{2}\left(r^2_1b_{11}+r^2_2b_{22}+2r_1r_2b_{12}\right)\right). \end{aligned}$$

Expressed in terms of δ(st) this is

$$ \begin{aligned} {\mathbb{E}}\left( x^r_i(t)\mid x(s)=x_{s}\right)=& \exp\left(r\log(x_{s,i})+r\delta_i (s,t)+\frac{r^2(t-s)}{2} b_{ii}\right) \\ =& x_{s,i}^r\exp\left(r \delta_i (s,t)+\frac{r^2(t-s)}{2} b_{ii}\right) \end{aligned} $$

and

$$ \begin{aligned} {\mathbb{E}}\left( x^{r_1}_1(t)x^{r_2}_2(t)\mid x(s)=x_{s}\right)=& x_{s,1}^{r_1}x_{s,2}^{r_2}\exp\left(r_1\delta_1 (s,t)+r_2\delta_2 (s,t)\right. \\ &\left. +\frac{(t-s)}{2}\left(r^2_1b_{11}+r^2_2b_{22}+2r_1r_2b_{12}\right)\right). \end{aligned} $$

For t 0 < s ≤ t the covariance function is

$$ \hbox{Cov}\left( x_1(t), x_2(s)\right)={\mathbb{E}}\left(x_1(t)x_2(s)\right)-{\mathbb{E}}\left(x_1(t)\right){\mathbb{E}}\left(x_2(s)\right) $$
$$ \begin{aligned} {\mathbb{E}}\left(x_1(t)x_2(s)\right)=& {\mathbb{E}}\left[{\mathbb{E}}\left(x_1(t)x_2(s)/x(s)\right)\right] =\, {\mathbb{E}}\left[x_2(s){\mathbb{E}}\left(x_1(t)/x(s)\right)\right] \\ =\,&{\mathbb{E}}\left[x_2(s)x_1(s)\right]\exp\left(\delta_1 (s,t)+\frac{(t-s)}{2}b_{11}\right) \\ =\,& x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,s)+\delta_2 (t_0,s)+\frac{(s-t_0)}{2}\left(b_{11}+b_{22}+2b_{12}\right)\right)\exp\left(\delta_1 (s,t)+\frac{(t-s)}{2} b_{11}\right) \\ =\,&x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,s)+\delta_1 (s,t)+\delta_2 (t_0,s)+\frac{(s-t_0)}{2}b_{11}+\frac{(t-s)}{2}b_{11}+\frac{(s-t_0)}{2}b_{22}+(s-t_0)b_{12}\right). \\ \end{aligned} $$

Using the fact that

$$ \begin{aligned} &\delta_1 (t_0,s)+\delta_1 (s,t)=\delta_1 (t_0,t) \\ &\frac{(t-s)}{2}b_{11}+\frac{(s-t_0)}{2}b_{11}=\frac{t-t_0}{2}b_{11}. \end{aligned} $$

we obtain

$$ {\mathbb{E}}\left(x_1(t)x_2(s)\right)= x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,t)+ \frac{t-t_0}{2}b_{11}+\,\delta_2 (t_0,s)+\frac{(s-t_0)}{2}b_{22}+ (s-t_0)b_{12}\right). $$

The non conditional marginal trend expressions for x 1(t) and x 2(s) are:

$$ \begin{aligned} {\mathbb{E}}\left(x_1(t)\right)=\,& x_{t_0,1}\exp\left(\delta_1 (t_0,t)+ \frac{t-t_0}{2}b_{11}\right)\\ {\mathbb{E}}\left(x_2(s)\right)=\,& x_{t_0,2}\exp\left(\delta_2 (t_0,t)+ \frac{s-t_0}{2}b_{22}\right) \end{aligned} $$

it is then deduced that

$$ \begin{aligned} \hbox{Cov}\left( x_1(t), x_2(s)\right)=\,& x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,t)+ \delta_2 (t_0,s)+\frac{(t-t_0)}{2}b_{11}+\frac{(s-t_0)}{2}b_{22}+(s-t_0)b_{12}\right) \\ &-x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,t)+ \delta_2 (t_0,s)+\frac{(t-t_0)}{2}b_{11}+ \frac{(s-t_0)}{2}b_{22}\right) \\ =\,&x_{t_0,1}x_{t_0,2}\exp\left(\delta_1 (t_0,t)+ \delta_2 (t_0,s)+\frac{(t-t_0)}{2}b_{11}+ \frac{(s-t_0)}{2}b_{22}\right)\left(e^{(s-t_0)b_{12}}-1\right). \cr \end{aligned} $$

The marginal variance function of the process is:

$$ \begin{aligned} \hbox{Var}\left(x_1(t)\right)=\,& {\mathbb{E}}\left(x_1(t)^2\right)-{\mathbb{E}}\left(x_1(t)\right)^2=x_{t_0,1}^2\exp\left\{2\delta_1 (t_0,t)+ 2(t-t_0)b_{11} \right\}- x_{t_0,1}^2\exp\left\{2\delta_1 (t_0,t)+ (t-t_0)b_{11}\right\} \\ =\,&x_{t_0,1}^2\exp\left\{2\delta_1 (t_0,t)+ (t-t_0)b_{11} \right\}\left(e^{(t-t_0)b_{11}}-1\right). \end{aligned} $$

In the same way

$$ \hbox{Var}\left(x_2(s)\right)=x_{t_0,2}^2\exp\left\{2\delta_2 (t_0,s)+\, (s-t_0)b_{22} \right\}\left(e^{(s-t_0)b_{22}}-1\right). $$

Therefore

$$ \begin{aligned} \varrho(x_1(t), x_2(s))=&\frac{\hbox{Cov}\left( x_1(t), x_2(s)\right)}{\sqrt{\hbox{Var}\left(x_1(t)\right)}\sqrt{\hbox{Var}\left(x_2(s)\right)}} \\ =&\frac{x_{t_0,1}x_{t_0,2}\exp\left\{\delta_1 (t_0,t)+ \delta_2 (t_0,s)+\frac{(t-t_0)}{2}b_{11}+ \frac{(s-t_0)}{2}b_{22}\right\}\left(e^{(s-t_0)b_{12}}-1\right)}{x_{t_0,1}x_{t_0,2}\exp\left\{\delta_1 (t_0,t)+\frac{t-t_0}{2}b_{11}+\delta_2 (t_0,s)+\frac{s-t_0}{2}b_{22} \right\}\left(e^{(t-t_0)b_{11}}-1\right)^{1/2}\left(e^{(s-t_0)b_{22}}-1\right)^{1/2}} \\ =&\frac{\left(e^{(s-t_0)b_{12}}-1\right)}{\left(e^{(t-t_0)b_{11}}-1\right)^{1/2}\left(e^{(s-t_0)b_{22}}-1\right)^{1/2}}. \end{aligned} $$

In the same way

$$ \varrho(x_1(s), x_2(t))=\frac{\left(e^{(s-t_0)b_{12}}-1\right)}{\left(e^{(s-t_0)b_{11}}-1\right)^{1/2}\left(e^{(t-t_0)b_{22}}-1\right)^{1/2}} $$

which can be expressed as

$$ \varrho(x_i(t), x_j(s))=\frac{\left(e^{(s-t_0)b_{ij}}-1\right)}{\left(e^{(t-t_0)b_{ii}}-1\right)^{1/2}\left(e^{(s-t_0)b_{jj}}-1\right)^{1/2}} $$

for i ≠ j and t 0 < s ≤ t.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Jáimez, R., Gutiérrez-Sánchez, R., Nafidi, A. et al. A bivariate stochastic Gamma diffusion model: statistical inference and application to the joint modelling of the gross domestic product and CO2 emissions in Spain. Stoch Environ Res Risk Assess 28, 1125–1134 (2014). https://doi.org/10.1007/s00477-013-0802-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0802-2

Keywords

Mathematics Subject Classification (2010)

Navigation