Skip to main content
Log in

A decoupled strategy to solve reduced-order multimodel problems in the PGD and Arlequin frameworks

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the coupling of reduced models for the simulation of structures involving localized geometrical details. Herein, we use the Arlequin method, originally designed to deal with multimodel and multiscale analyses of mechanical problems, to mix reduced models built using the proper generalized decomposition. Instead of solving the global coupled problem in a monolithic way, the LATIN strategy is used to propose a decoupled algorithm. The numerical examples demonstrate the feasibility of the approach and in particular its potentiality in terms of flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maday Y, Ronquist E (2004) The reduced-basis element method: application to a thermal fin problem. J Sci Comput 26(1):240–258

    MathSciNet  MATH  Google Scholar 

  2. Barrault M, Maday Y, Nguyen N, Patera A (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris 339:667–672

    Article  MathSciNet  MATH  Google Scholar 

  3. Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742

    Article  MATH  Google Scholar 

  4. Gunzburger M, Peterson J, Shadid J (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047

    Article  MathSciNet  MATH  Google Scholar 

  5. Patera AT, Rozza G (2006) Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, MIT

  6. Rozza G, Veroy K (2007) On the stability of the reduced basis method for Stokes equations in parametrized domains. Computat Methods Appl Mech Eng 196(7):1244–1260

    Article  MathSciNet  MATH  Google Scholar 

  7. Ladevèze P (1999) Nonlinear computational structural mechanics-new approaches and non-incremental methods of calculation. Springer Verlag, New York

    Book  MATH  Google Scholar 

  8. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121

    Article  MATH  Google Scholar 

  9. Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  10. Relun N, Néron D, Boucard P-A (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92

    Article  MathSciNet  MATH  Google Scholar 

  11. Cremonesi M, Néron D, Guidault P-A, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292

    Article  MathSciNet  MATH  Google Scholar 

  12. Néron D, Boucard P-A, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292

    Article  MathSciNet  Google Scholar 

  13. Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations: a primer. Springer, SpringerBriefs in Applied Sciences and Technology, Cham

    Book  MATH  Google Scholar 

  14. González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223

    Article  Google Scholar 

  15. Alfaro I, González D, Bordeu F, Leygue A, Ammar A, Cueto E, Chinesta F (2014) Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices. J Comput Surg 1(1):1

    Article  Google Scholar 

  16. Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102(5):991–1017

    Article  MathSciNet  Google Scholar 

  17. Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. C R Méc 343(4):247–263

    Article  Google Scholar 

  18. Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804

    Article  MathSciNet  MATH  Google Scholar 

  19. Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084

    Article  MathSciNet  MATH  Google Scholar 

  20. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method (inFrench). C R l’Acad Sci 326:899–904

    MATH  Google Scholar 

  21. Ben H, Dhia G, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462

    Article  MATH  Google Scholar 

  22. Ben Dhia H (1998) Further insights by theoretical investigations of the multiscale arlequin method. Int J Multiscale Comput Eng 6(3):215–232

    Article  Google Scholar 

  23. Cottereau R, Clouteau D, Ben Dhia H, Zaccardi C (2011) A stochasticdeterministic coupling method for continuum mechanics. Comput Methods Appl Mech Eng 200(47–48):3280–3288

    Article  MathSciNet  MATH  Google Scholar 

  24. Nazeer S, Bordeu F, Leygue A, Chinesta F (2014) Arlequin based PGD domain decomposition. Comput Mech 54(5):1175–1190

    Article  MathSciNet  MATH  Google Scholar 

  25. Ben H, Dhia N, Elkhodja F-X (2008) Roux, multimodeling of multi-alterated structures in the arlequin framework. solution with a domain-decomposition solver. Eur J Comput Mech 17:969–980

    MATH  Google Scholar 

  26. Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296

    Article  MathSciNet  MATH  Google Scholar 

  27. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372

    Article  MathSciNet  MATH  Google Scholar 

  28. Allix O, Gosselet P, Kerfriden P, Saavedra K (2012) Virtual delamination testing through non-linear multi-scale computational methods: some recent progress, CMC: computers. Mater Contin 32(2):107–132

    Google Scholar 

  29. Ben Dhia H, Rateau G (2002) Application of the arlequin method to some structures with defects. Eur J Comput Mech 11(2–3–4):291–304

  30. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626

    Article  MathSciNet  MATH  Google Scholar 

  31. Heyberger C, Boucard P-A, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49(3):277–289

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors want to thank the French National Centre for Scientific Research (CNRS) and the French National Research Agency (projet number ANR-14-CE07-0007 CouESt) for the fundings provided to this work. The numerical simulations were performed using the routines CArl, freely available at https://github.com/cottereau/CArl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Néron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Néron, D., Dhia, H.B. & Cottereau, R. A decoupled strategy to solve reduced-order multimodel problems in the PGD and Arlequin frameworks. Comput Mech 57, 509–521 (2016). https://doi.org/10.1007/s00466-015-1236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1236-0

Keywords

Navigation