Skip to main content

Advertisement

Log in

An electrochemical immunosensor based on interdigitated array microelectrode for the detection of chlorpyrifos

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An electrochemical immunosensor based on interdigitated array microelectrodes (IDAMs) was developed for sensitive, specific and rapid detection of chlorpyrifos. Anti-chlorpyrifos monoclonal antibodies were orientedly immobilized onto the gold microelectrode surface through protein A. Chlorpyrifos were then captured by the immobilized antibody, resulting in an impedance change in the IDAMs surface. Electrochemical impedance spectroscopy was used in conjunction with the fabricated sensor to detect chlorpyrifos. Under optimum conditions, the impedance value change of chlorpyrifos was proportional to its concentrations in the range of 100–105 ng/mL. The detection limit was found to be 0.014 ng/mL for chlorpyrifos. The proposed chlorpyrifos immunosensor could be used as a screening method in pesticide determination for the analysis of environmental, agricultural and pharmaceutical samples due to its rapidity, sensitivity and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bäumner AJ, Schmid RD (1998) Development of a new immunosensor for pesticide detection: a disposable system with liposome-enhancement and amperometric detection. Biosens Bioelectron 13(5):519–529

    Article  Google Scholar 

  2. Valera E, Ramón-Azcón J, Barranco A, Alfaro B, Sánchez-Baeza F, Marco MP, Rodríguez Á (2010) Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chem 122(3):888–894

    Article  CAS  Google Scholar 

  3. Du D, Chen S, Cai J, Zhang A (2008) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol–gel interface. Talanta 74(4):766–772

    Article  CAS  Google Scholar 

  4. Navarro P, Pérez AJ, Gabaldón JA, Núñez-Delicado E, Puchades R, Maquieira A, Morais S (2013) Detection of chemical residues in tangerine juices by a duplex immunoassay. Talanta 116:33–38

    Article  CAS  Google Scholar 

  5. Prabhakar N, Sumana G, Arora K, Singh H, Malhotra BD (2008) Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochim Acta 53(12):4344–4350

    Article  CAS  Google Scholar 

  6. Mauriz E, Calle A, Manclús JJ, Montoya A, Escuela AM, Sendra JR, Lechuga LM (2006) Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides. Sens Actuators B 118(1):399–407

    Article  CAS  Google Scholar 

  7. Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561(1):40–47

    Article  CAS  Google Scholar 

  8. Wu J, Fu X, Xie C, Yang M, Fang W, Gao S (2011) TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting. Sens Actuators B 160(1):511–516

    Article  CAS  Google Scholar 

  9. Charles T, Campbell JA, Liu G, Lin Y, Kousba AA (2007) Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva. Toxicol Appl Pharmacol 219(2):217–225

    Google Scholar 

  10. Wang L, Lu D, Wang J, Du D, Zou Z, Wang H, Smith JN, Timchalk C, Liu F, Lin Y (2011) A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos. Biosens Bioelectron 26(6):2835–2840

    Article  CAS  Google Scholar 

  11. Liu XQ, Duckworth PA, Wong DKY (2010) Square wave voltammetry versus electrochemical impedance spectroscopy as a rapid detection technique at electrochemical immunosensors. Biosens Bioelectron 25(6):1467–1473

    Article  CAS  Google Scholar 

  12. Katz E, Alfonta L, Willner I (2001) Chronopotentiometry and Faradaic impedance spectroscopy as methods for signal transduction in immunosensors. Sens Actuators B 76(1):134–141

    Article  CAS  Google Scholar 

  13. Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I (2001) Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosens Bioelectron 16(9):675–687

    Article  CAS  Google Scholar 

  14. Schmitt N, Tessier L, Watier H, Patat F (1997) A new method based on acoustic impedance measurements for quartz immunosensor. Sens Actuators B 43(1):217–223

    Article  CAS  Google Scholar 

  15. Farré M, Kantiani L, Barceló D (2007) Advances in immunochemical technologies for analysis of organic pollutants in the environment. TrAC Trends Anal Chem 26(1):1100–1112

    Article  Google Scholar 

  16. Yang G, Jin W, Wu L, Wang Q, Shao H, Qin A, Yu B, Li D, Cai B (2011) Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Anal Chim Acta 706(1):120–127

    Article  CAS  Google Scholar 

  17. Wei Q, Zhao Y, Du B, Wu D, Li H, Yang M (2012) Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem 134(3):1601–1606

    Article  CAS  Google Scholar 

  18. Laube T, Kergaravat SV, Fabiano SN, Hernández SR, Alegret S, Pividori MI (2011) Magneto immunosensor for gliadin detection in gluten-free foodstuff: towards food safety for celiac patients. Biosens Bioelectron 27(1):46–52

    Article  CAS  Google Scholar 

  19. Čerňanská M, Tomčík P, Jánošíková Z, Rievaj M, Dušan B (2013) Indirect voltammetric detection of fluoride ions in toothpaste on a comb-shaped interdigitated microelectrode array. Talanta 83(5):1472–1475

    Google Scholar 

  20. Tang X, Flandre D, Raskin JP, Nizet Y, Moreno-Hagelsieb L, Pampin R, Francis LA (2011) A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sens Actuators B 156(2):578–587

    Article  CAS  Google Scholar 

  21. Yan X, Wang M, An D (2011) Progress of interdigitated array microelectrodes based impedance immunosensor. Chin J Anal Chem 39(10):1601–1610

    Article  CAS  Google Scholar 

  22. Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, Berghman L, Bottje W (2009) Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta 79(2):159–164

    Article  CAS  Google Scholar 

  23. Chuang MC, Lai HY, Ho JA, Chen YY (2013) Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection. Biosens Bioelectron 41:602–607

    Article  CAS  Google Scholar 

  24. Ramón-Azcón J, Valera E, Rodríguez Á, Barranco A, Alfaro B, Sanchez-Baeza F, Marco MP (2008) An impedimetric immunosensor based on interdigitated microelectrodes (IDμE) for the determination of atrazine residues in food samples. Biosens Bioelectron 23(9):1367–1373

    Article  Google Scholar 

  25. Tomčík P, Krajčíková M, Bustin D (2001) Determination of pharmaceutical dosage forms via diffusion layer titration at an interdigitated microelectrode array. Talanta 55(6):1065–1070

    Article  Google Scholar 

  26. Beltrán NH, Finger RA, Santiago-Aviles J, Espinoza-Vallejos P (2003) Effect of parasitic capacitances on impedance measurements in microsensors structures: a numerical study. Sens Actuators B 96(1):139–143

    Article  Google Scholar 

  27. Fernández-Sánchez C, McNeil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor developmen. TrAC Trends Anal Chem 24(1):37–48

    Article  Google Scholar 

  28. Streitner I, Goldhofer M, Cho S, Thielecke H, Kinscherf R, Streitner F, Metz J, Haase KK, Borggrefe M, Suselbeck T (2009) Electric impedance spectroscopy of human atherosclerotic lesions. Atherosclerosis 206(2):464–468

    Article  CAS  Google Scholar 

  29. Huang CH, Li JX, Tang Y, Chen YY (2011) Detection of duck hepatitis virus serotype 1 by biosensor based on imaging ellipsometry. Curr Appl Phys 11(3):353–357

    Article  Google Scholar 

  30. Jain SR, Borowska E, Davidsson R, Tudorache M, Pontén E, Emnéus J (2004) A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with Protein G. Biosens Bioelectron 19(8):795–803

    Article  CAS  Google Scholar 

  31. Jaroslaava T (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. Chromatogr B Biomed Sci Appl 722(1):11–31

    Google Scholar 

  32. Al-Hardan N, Abdullah MJ, Aziz AA (2011) Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl Surf Sci 257(1):8993–8997

    Article  CAS  Google Scholar 

  33. Zamfir LG, Rotariu L, Bala C (2011) A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26(8):3692–3695

    Article  CAS  Google Scholar 

  34. Liu T, Su HC, Qu XJ, Ju P, Cui L, Ai SY (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators B 160(1):1255–1261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30972055, 31101286), Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China (No. 2011GB2C60020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Sun, X., Guo, Y. et al. An electrochemical immunosensor based on interdigitated array microelectrode for the detection of chlorpyrifos. Bioprocess Biosyst Eng 38, 307–313 (2015). https://doi.org/10.1007/s00449-014-1269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1269-3

Keywords

Navigation