Skip to main content
Log in

High-Frequency Interdigitated Array Electrode-Based Capacitive Biosensor for Protein Detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This paper reports a study on developing of a protein detection biochip based on interdigitated array electrodes (IDAEs) capacitive immunosensor. The protein after being preconcentrated in a detection region will be selectively captured and detected by the capacitive immunosensor. Using electrical impedance spectroscopy operated at high-frequency in the range of 100 kHz–1 MHz, the capacitance of the gold electrode is determined and the antibody surface modification steps can be also monitored. The experiment results show the capacitance changes in accordance with the adding biochemical layer on gold electrodes for each step of the antibody surface modification. In particular, the total impedance operated at 1 MHz frequency has been seen to change from 2.1 kΩ of bare chip (before antibody surface modification) to 8 kΩ after antibody surface modification process while the serial capacitance is recorded to reduce steadily from 450 pF to 55 pF. Also, the efficiency of protein chip was investigated by implementing the measurement of 10 µM BSA with and without preconcentration process. The measurement results have shown the sensitivity increasing significantly after the protein is preconcentrated in this chip. The results demonstrate high efficiency of protein detection can be achieved by operating high frequency capacitive measurement on IDAEs capacitive immunosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hudelist, G., Pacher-Zavisin, M., Singer, C., Holper, T., Kubista, E., Schreiber, M., Manavi, M., Bilban, M. & Czerwenka, K. Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue. Breast Cancer Res. Treat.86, 281–291 (2004).

    Article  CAS  Google Scholar 

  2. Yaziji, H., Taylor, C.R., Goldstein, N.S., Dabbs, D.J., Hammond, E.H., Hewlett, B., Floyd, A.D., Barry, T.S., Martin, A.W., Badve, S., Baehner, F., Cartun, R.W., Eisen, R.N., Swanson, P.E., Hewitt, S.M., Vyberg, M. & Hicks, D.G. Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl. Immunohistochem. Mol. Morphol.16, 513–520 (2008).

    Article  CAS  Google Scholar 

  3. Powers, A.D. & Palecek, S.P. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J. Healthcare Eng.3, 503–534 (2014).

    Article  Google Scholar 

  4. Veskimäe, K., Staff, S., Grönholm, A., Pesu, M., Laaksonen, M., Nykter, M., Isola, J. & Mäenpää, J. Assessment of PARP protein expression in epithelial ovarian cancer by ELISA pharmacodynamic assay and immunohistochemistry. Tumor Biol.37, 11991–11999 (2016).

    Article  Google Scholar 

  5. Schmitt, M., Sturmheit, A.S., Welk, A., Schnelldorfer, C. & Harbeck, N. Procedures for the quantitative protein determination of urokinase and its inhibitor, PAI-1, in human breast cancer tissue extracts by ELISA. Methods Mol. Med.120, 245–265 (2006).

    CAS  PubMed  Google Scholar 

  6. Ayling, K., Bowden, T., Tighe, P., Todd, I., Dilnot, E.M., Negm, O.H., Fairclough, L. & Vedhara, K. The application of protein microarray assays in psychoneuroimmunology. Brain, Behav., Immun.59, 62–66 (2017).

    Article  CAS  Google Scholar 

  7. Al-aqbi, Z.T., Yap, Y.C., Li, F. & Breadmore, M.C. Integrated microfluidic devices fabricated in poly (methyl methacrylate) (PMMA) for on-site therapeutic drug monitoring of aminoglycosides in whole blood. Biosensors9, 19 (2019)

    Article  CAS  Google Scholar 

  8. Lin C.-C., Hsu J.-L. & Lee G.-B. Sample preconcentration in microfluidic devices. Microfluid. Nanofluid.10, 481–511 (2011).

    Article  Google Scholar 

  9. Jen, C.-P., Amstislavskaya, T.G., Chen, K.-F. & Chen, Y.-H. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nano-particles. PLoS One10, e0126641 (2015).

    Article  Google Scholar 

  10. Wang, Y.C., Stevens, A.L. & Han J. Million-fold preconcentration of proteins and peptides by nano-fluidic filter. Anal. Chem.77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  11. Kim, S.M., Burns, M.A. & Hasselbrink, E.F. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal. Chem.78, 4779–4785 (2006)

    Article  CAS  Google Scholar 

  12. Lee, J.H., Song, Y.-A. & Han, J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip8, 596–601 (2008).

    Article  CAS  Google Scholar 

  13. Wu, D. & Steckl, A.J High speed nanofluidic protein accumulator. Lab Chip9, 1890–6 (2009).

    Article  CAS  Google Scholar 

  14. Bogomolova, A., Komarova, E., Reber, K., Gerasimov, T., Yavuz, O., Bhatt, S. & Aldissi, M. Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal. Chem.81, 3944–3949 (2009).

    Article  CAS  Google Scholar 

  15. Swietnlow, A., Skoog, M. & Johansson, G. Double-layer capacitance measurements of self-assembled layers on gold electrodes. Electroanalysis4, 921–928 (1992).

    Article  Google Scholar 

  16. Zoltowski, P. On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem.443, 149–154 (1998).

    Article  CAS  Google Scholar 

  17. Savitri, D. & Mitra, C.K. Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements. Bioelectrochem. Bioenerg.48, 163–169 (1999).

    Article  CAS  Google Scholar 

  18. Hong, J., Yoon, D.S., Kim, S.K., Kim, T.S., Kim, S., Pak, E.Y. & No, K. AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip5, 270–279 (2005).

    Article  CAS  Google Scholar 

  19. Limbut, W., Hedström, M., Thavarungkul, P., Kanatharana, P. & Mattiasson, B. Capacitive biosensor for detection of endotoxin. Anal. Bioanal. Chem.389, 517–525 (2007).

    Article  CAS  Google Scholar 

  20. Teeparuksapun, K., Kanatharana, P., Limbut, W., Thammakhet, C., Asawatreratanakul, P., Mattiasson, B., Wongkittisuksa, B., Limsakul, C. & Thavarungkul, P. Disposable Electrodes for Capacitive Immunosensor. Electroanalysis21, 1066–1074 (2009).

    Article  CAS  Google Scholar 

  21. Loyprasert, S., Hedström, M., Thavarungkul, P., Kanatharana, P. & Mattiasson, B. Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor. Biosens. Bioelectron.25, 1977–1983 (2010).

    Article  CAS  Google Scholar 

  22. Niyomdecha, S., Limbut, W., Numnuam, A., Asawatreratanakul P., Kanatharana, P. & Thavarungkul, P. Capacitive antibacterial susceptibility screening test with a simple renewable sensing surface. Biosens. Bioelectron.96, 84–88 (2017).

    Article  CAS  Google Scholar 

  23. Li, S., Yuan, Q., Morshed, B.I., Ke, C., Wu, J. & Jiang, H. Dielectrophoretic responses of DNA and fluorophore in physiological solution by impedimetric characterization. Biosens. Bioelectron.41, 649–655 (2012).

    Article  CAS  Google Scholar 

  24. Mattiasson, B. & Hedström, M. Capacitive bio-sensors for ultra-sensitive assays. TrAC, Trends Anal. Chem.79, 233–238 (2016).

    Article  CAS  Google Scholar 

  25. Igreja, R. & Dias, C.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators, A112, 291–301 (2004).

    Article  CAS  Google Scholar 

  26. Olthuis, W., Streekstra, W. & Bergveld, P. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators, B24, 252–256 (1995).

    Article  CAS  Google Scholar 

  27. Wang, Y., Wang, R., Li, Y., Srinivasan, B., Tung, S., Wang, H., Slavik, M.F. & Griffis, C.L. Detection of Escherichia coli O157:H7 using interdigitated array microelectrode-based immunosensor. Biol. Eng.2, 49–62 (2010).

    Article  Google Scholar 

  28. Cui, H., Li, S., Yuan, Q., Wadhwa, A., Eda, S., Chambers, M., Ashford, R., Jiang, H. & Wu, J. An AC electrokinetic impedance immunosensor for rapid detection of tuberculosis. Analyst138, 7188–7196 (2013).

    Article  CAS  Google Scholar 

  29. Blume, S.O.P, Ben-Mrad, R. & Sullivan, P.E. Characterization of coplanar electrode structures for microfluidic-based impedance spectroscopy. Sens. Actuators, B218, 261–270 (2015).

    Article  CAS  Google Scholar 

  30. Ibrahim, M., Claudel, J., Kourtiche, D. & Nadi, M. Geometric parameters optimization of planar inter-digitated electrodes for bioimpedance spectroscopy. Journal of Electrical Bioimpedance4, 13–22 (2013).

    Article  Google Scholar 

  31. Sharma, D., Lee, J., Seo, J. & Shin, H. Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nano-particles. Sensors17, 2128 (2017).

    Article  Google Scholar 

  32. Soraya, G.V., Chan, J., Nguyen, T.C., Huynh, D.H., Abeyrathne, C.D., Chana, G., Todaro, M., Skafidas, E. & Kwan, P. An interdigitated electrode biosensor platform for rapid HLA-B*15:02 genotyping for prevention of drug hypersensitivity. Biosens. Bioelectron.111, 174–183 (2018).

    Article  CAS  Google Scholar 

  33. Jasim, I., Shen, Z., Mlaji, Z., Yuksek, N.S., Abdullah, A., Liu, J., Dastider, S.G., El-Dweik, M., Zhang, S. & Almasri, M. An impedance biosensor for simultaneous detection of low concentration of Salmonella serogroups in poultry and fresh produce samples. Biosens. Bioelectron.126, 292–300 (2018).

    Article  Google Scholar 

  34. Yi, Y. & Park, J.-K. Fabrication of Electrochemical Sensor with Tunable Electrode Distance. Journal of Semiconductor Technology and Science5, 30–37 (2005)

    CAS  Google Scholar 

  35. Yoo, Y.K., Yoon, D.S., Kim, G., Kim, J., Han, S.I., Lee, J., Chae, M.S., Lee, S.M., Lee, K.H., Hwang, K.S. & Lee, J.H. An enhanced platform to analyse low-affinity amyloid β protein by integration of electrical detection and preconcentrator. Sci. Rep.7, 1–8 (2017).

    Article  Google Scholar 

  36. Quoc, T.V., Wu, M.S., Bui, T.T., Duc, T.C. & Jen C.P. A compact microfluidic chip with integrated impedance biosensor for protein preconcentration and detection. Biomicrofluidics11, 054113 (2017).

    Article  Google Scholar 

  37. Daniels, J.S. & Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electro-analysis19, 1239–1257 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Chu Duc.

Additional information

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quoc, T.V., Ngoc, V.N., Bui, T.T. et al. High-Frequency Interdigitated Array Electrode-Based Capacitive Biosensor for Protein Detection. BioChip J 13, 403–415 (2019). https://doi.org/10.1007/s13206-019-3412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3412-3

Keywords

Navigation