Skip to main content
Log in

Intensification of high cell-density cultivations of rE. coli for production of S. pneumoniae antigenic surface protein, PspA3, using model-based adaptive control

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work proposes an innovative methodology to control high density fed-batch cultures of E. coli, based on measurements of the concentration of dissolved oxygen and on estimations of the cellular specific growth rate (µ), of the yield of biomass/limiting substrate (Y xs) and of the maintenance coefficient (m). The underlying idea is to allow cells to grow according to their metabolic capacity, without the constraints inherent to pre-set growth rates. Cellular concentration was assessed on-line through a capacitance probe. Three configurations of the control system were compared: (1) pre-set value for the three control parameters; (2) continuously updating µ; (3) updating µ, Y xs and m. Implementation of an efficient noise filter for the signal of the capacitance probe was essential for a good performance of the control system. The third control strategy, within the framework of an adaptive model-based control, led to the best results, with biomass productivity reaching 9.2 gDCW/L/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shiloach J, Fass R (2005) Growing E. coli to high cell density: a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  Google Scholar 

  2. Knabben I, Regestein L, Grumbach C, Steinbusch S, Kunze G, Büchs J (2010) Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal. J Biotechnol 149:60–66

    Article  CAS  Google Scholar 

  3. Lee J, Lee SY, Park S, Milddelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  Google Scholar 

  4. Seeger A, Schbeppe B, Mccarthy JEG, Deckwer WD, Rinas U (1995) Comparison of temperature and isopropyl-β-D-thiogalacto-pyranoside-induced synthesis of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Enzym Microb Tech 17:947–953

    Article  CAS  Google Scholar 

  5. Dabros M, Schuler MM, Marison IW (2010) Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosyst Eng 33:1109–1118

    Article  CAS  Google Scholar 

  6. Warth B, Rajkai G, Mandenius CF (2010) Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J Biotechnol 147:37–45

    Article  CAS  Google Scholar 

  7. Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE (2009) On-line estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in situ multi-wavelength fluorescence and software sensors. J Biotechnol 144:102–112

    Article  Google Scholar 

  8. Gnoth S, Jenzsch M, Simutis R, Lubbert A (2008) Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31:21–39

    Article  CAS  Google Scholar 

  9. Babaeipour V, Shojaosadati SA, Robatjazi SM, Khalilzadeh R, Maghsoudi N (2007) Over-production of human interferon-y by HCDC of recombinant Escherichia coli. Process Biochem 42:112–117

    Article  CAS  Google Scholar 

  10. Ansorge S, Esteban G, Schmid G (2009) Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells. Biotechnol Prog 26(1):272–283

    Google Scholar 

  11. Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzym Microb Technol 25:161–171

    Article  CAS  Google Scholar 

  12. Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus with industrial media using a capacitance probe. J Biotechnol 84:45–52

    Article  CAS  Google Scholar 

  13. Ferreira AP, Vieira LM, Cardoso JP, Menezes JC (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol 116:403–409

    Article  Google Scholar 

  14. Bai W, Zhao KS, Asami K (2006) Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model. Biophys Chem 122:136–142

    Article  CAS  Google Scholar 

  15. Xiong ZQ, Guo MJ, Guo YX, Chu J, Zhuang YP, Zhang SL (2008) Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng 105(4):409–413

    Article  CAS  Google Scholar 

  16. Kiviharju K, Salomen K, Moilanen U, Eerikainen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J Ind Microbiol Biotechnol 35:657–665

    Article  CAS  Google Scholar 

  17. Reis GB, Horta ACL, Zangirolami TC, Giordano RC, Cruz A.JG (2009) Control of Fed-Batch Yeast Cultivation Using a Capacitance Sensor. 10ht Int Symp Process Syst Eng–PSE 2009

  18. Maskow T, Röllich A, Fetzer I, Yao J, Harms H (2008) Observation of non-linear biomass–capacitance correlations: reasons and implications for bioprocess control. Biosens Bioelectron 24:123–128

    Article  CAS  Google Scholar 

  19. Abi A, Sarrafzadeh MH, Mehrnia MR, Ghommidh C (2010) Application of dielectric permittivity measurements in physiological state monitoring of Bacillus subtilis culture. 2010 2nd International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2010)

  20. Sarrafzadeh MH, Belloy L, Esteban G, Navarro JM, Ghommidh C (2005) Dielectric monitoring of growth and sporulation of Bacillus thuringiensis. Biotechnol Lett 27:511–517

    Article  CAS  Google Scholar 

  21. Nielsen J, Villadsen J, Lidén G (2002) Bioreaction engineering principles, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  22. Eilers PHC (2003) A Perfect Smoother. Anal Chem 75(14):3631–3636

    Article  CAS  Google Scholar 

  23. Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD (1995) Simple fed batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39:59–65

    Article  CAS  Google Scholar 

  24. Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Germany

    Google Scholar 

  25. Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Gonçalves VM (2011) Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. ApplMicrobiol Biotechnol. 1–12

  26. Horta ACL, Zangirolami TC, Giordano RC, Cruz AJG, Reis GB, Jesus CDF (2010) Supervisory system for bioreactor high cell density cultivations. Software registration proc. 11008-6 INPI, Brazil

  27. Olsson L, Nielsen J (1997) 1On-line and in situ monitoring of biomass in submerged cultivations. TIBTECH 15:517–522

    Article  CAS  Google Scholar 

  28. Silva AJ, Baptista-Neto A, Cilento MC, Giordano RC, Zangirolami TC (2008) Bioreactor aeration conditions modulate growth and antigen expression during Erysipelothrix rhusiopathiae cultivation. Appl Microbiol Biotechnol 79:23–31

    Article  Google Scholar 

  29. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  30. Smith SW (1997) The scientist and engineering guide to digital signal processing. California Technical Production, San Diego

    Google Scholar 

  31. Giordano RC, Bertini JR Jr, Nicoletti MC, Giordano RLC (2007) Online filtering of CO2 signals from a bioreactor gas outflow using a committee of constructive neural networks. Bioprocess Biosyst Eng 31(2):101–109

    Article  Google Scholar 

  32. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN (2004) High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng 26:147–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP) and Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for funding this work, and Tiago Martins Pereira and Amadeus Gomes de Azevedo for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto de Campos Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horta, A.C.L., Sargo, C.R., da Silva, A.J. et al. Intensification of high cell-density cultivations of rE. coli for production of S. pneumoniae antigenic surface protein, PspA3, using model-based adaptive control. Bioprocess Biosyst Eng 35, 1269–1280 (2012). https://doi.org/10.1007/s00449-012-0714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0714-4

Keywords

Navigation