Skip to main content
Log in

The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Paget’s disease of bone (PDB) is one of the most frequent metabolic bone disorders (1–5%), next to osteoporosis, affecting individuals above age 55. Sequestosome1 mutations explain a part of the PDB patients, but still the disease pathogenesis in the remaining PDB patients is largely unknown. Therefore, association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed to find the genetic risk variants. Previously such studies indicated a role of the OPG and RANK gene. The latter was recently confirmed in a genome-wide association study (GWAS) which also indicated the involvement of chromosomal regions harbouring the CSF1 and OPTN gene. In this study, we sought to replicate these findings in a Belgian and a Dutch population. Similar significant results were obtained for the single nucleotide polymorphisms and the haplotypes. The most significant results are found in the CSF1 gene region, followed by the OPTN and TNFRSF11A gene region (p values ranging from 1.3 × 10−4 to 3.8 × 10−8, OR = 1.523–1.858). We next obtained significant association with a polymorphism from the chromosomal region around the TM7SF4 gene (p = 2.7 × 10−3, OR = 1.427), encoding DC-STAMP which did not reach genome-wide significance in the GWAS, but based on its function in osteoclasts it can be considered a strong candidate gene. After meta-analysis with the GWAS data, p values ranged between 2.6 × 10−4 and 8.8 × 10−32. The calculated cumulative population attributable risk of these four loci turned out to be about 67% in our two populations, indicating that most of the genetic risk for PDB is coming from genetic variants close to these four genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, Dunlop MG, Fraser WD, Hooper MJ, Isaia G, Nicholson GC, del Pino Montes J, Gonzalez-Sarmiento R, di Stefano M, Tenesa A, Walsh JP, Ralston SH (2010) Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 42:520–524

    Article  CAS  PubMed  Google Scholar 

  • Armas JB, Pimentel F, Guyer PB, Cooper C, Pye SR, O’Neill TW (2002) Evidence of geographic variation in the occurrence of Paget’s disease. Bone 30:649–650

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ (1981) The epidemiology of Paget’s disease. Metab Bone Dis Relat Res 3:231–233

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Beyens G, Van Hul E, Van Driessche K, Fransen E, Devogelaer JP, Vanhoenacker F, Van Offel J, Verbruggen L, De Clerck L, Westhovens R, Van Hul W (2004) Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget’s disease. Calcif Tissue Int 75:144–152

    Article  CAS  PubMed  Google Scholar 

  • Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W (2006) Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget’s disease of bone in an extended American family. Calcif Tissue Int 79:281–288

    Article  CAS  PubMed  Google Scholar 

  • Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, Zmierczak HG, Westhovens R, Van Offel J, Ralston SH, Devogelaer JP, Van Hul W (2007) Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res 22:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cavey JR, Ralston SH, Hocking LJ, Sheppard PW, Ciani B, Searle MS, Layfield R (2005) Loss of ubiquitin-binding associated with Paget’s disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 20:619–624

    Article  CAS  PubMed  Google Scholar 

  • Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277

    Article  CAS  PubMed  Google Scholar 

  • Choma TJ, Kuklo TR, Islinger RB, Murphey MD, Temple HT (2004) Paget’s disease of bone in patients younger than 40 years. Clin Orthop Relat Res 418: 202–204

    Google Scholar 

  • Chung PY, Beyens G, Guanabens N, Boonen S, Papapoulos S, Karperien M, Eekhoff M, Van Wesenbeeck L, Jennes K, Geusens P, Offeciers E, Van Offel J, Westhovens R, Zmierczak H, Devogelaer JP, Van Hul W (2008) Founder effect in different European countries for the recurrent P392L SQSTM1 mutation in Paget’s Disease of Bone. Calcif Tissue Int 83:34–42

    Article  CAS  PubMed  Google Scholar 

  • Chung PYJ, Beyens G, Riches PL, Van Wesenbeeck L, Jennes K, Daroszewska A, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak H, Westhovens R, Karperien M, Papapoulos S, Ralston SH, Devogelaer JP, Van Hul W (2009) Genetic variation in the TNFRSF11A (RANK) gene contributes to the risk to develop sporadic Paget’s disease of bone. Bone 44:S347–S348

    Article  Google Scholar 

  • Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, Daroszewska A, Fransen E, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Karperien M, Papapoulos S, Ralston SH, Devogelaer JP, Van Hul W (2010) Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res. doi:10.1002/jbmr.162

  • Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem 278:37409–37412

    Article  CAS  PubMed  Google Scholar 

  • Cody JD, Singer FR, Roodman GD, Otterund B, Lewis TB, Leppert M, Leach RJ (1997) Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet 61:1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Cole P, MacMahon B (1971) Attributable risk percent in case-control studies. Br J Prev Soc Med 25:242–244

    CAS  PubMed  Google Scholar 

  • Collet C, Michou L, Audran M, Chasseigneaux S, Hilliquin P, Bardin T, Lemaire I, Cornelis F, Launay JM, Orcel P, Laplanche JL (2007) Paget’s disease of bone in the French population: novel SQSTM1 mutations, functional analysis, and genotype-phenotype correlations. J Bone Miner Res 22:310–317

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Schafheutle K, Dennison E, Kellingray S, Guyer P, Barker D (1999) The epidemiology of Paget’s disease in Britain: is the prevalence decreasing? J Bone Miner Res 14:192–197

    Article  CAS  PubMed  Google Scholar 

  • Cundy T (2006) Is Paget’s disease of bone disappearing? Skeletal Radiol 35:350–351

    Article  CAS  PubMed  Google Scholar 

  • Cundy T, McAnulty K, Wattie D, Gamble G, Rutland M, Ibbertson HK (1997) Evidence for secular change in Paget’s disease. Bone 20:69–71

    Article  CAS  PubMed  Google Scholar 

  • Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T (2004) Paget’s disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int 75:358–364

    Article  CAS  PubMed  Google Scholar 

  • Daroszewska A, Hocking LJ, McGuigan FE, Langdahl B, Stone MD, Cundy T, Nicholson GC, Fraser WD, Ralston SH (2004) Susceptibility to Paget’s disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 19:1506–1511

    Article  CAS  PubMed  Google Scholar 

  • Doyle T, Gunn J, Anderson G, Gill M, Cundy T (2002) Paget’s disease in New Zealand: evidence for declining prevalence. Bone 31:616–619

    Article  CAS  PubMed  Google Scholar 

  • Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    Article  CAS  PubMed  Google Scholar 

  • Eekhoff EW, Karperien M, Houtsma D, Zwinderman AH, Dragoiescu C, Kneppers AL, Papapoulos SE (2004) Familial Paget’s disease in The Netherlands: occurrence, identification of new mutations in the sequestosome 1 gene, and their clinical associations. Arthr Rheum 50:1650–1654

    Article  CAS  Google Scholar 

  • Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo ML, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi SM, Di Fede G, Sferrazza C, Rini GB, Melchiorre D, Matucci-Cerinic M, Brandi ML (2004) Two novel mutations at exon 8 of the Sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res 19:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Falchetti A, Di Stefano M, Marini F, Del Monte F, Gozzini A, Masi L, Tanini A, Amedei A, Carossino A, Isaia G, Brandi ML (2005) Segregation of a M404 V mutation of the p62/sequestosome 1 (p62/SQSTM1) gene with polyostotic Paget’s disease of bone in an Italian family. Arthr Res Ther 7:R1289–R1295

    Article  CAS  Google Scholar 

  • Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri MF, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi ML (2009) Genetic epidemiology of Paget’s disease of bone in italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int 84:20–37

    Article  CAS  PubMed  Google Scholar 

  • Fotino M, Haymovits A, Falk CT (1977) Evidence for linkage between HLA and Paget’s disease. Transplant Proc 9:1867–1868

    CAS  PubMed  Google Scholar 

  • Geetha T, Wooten MW (2002) Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett 512:19–24

    Article  CAS  PubMed  Google Scholar 

  • Gennari L, Merlotti D, Martini G, Nuti R (2006) Paget’s disease of bone in Italy. J Bone Miner Res 21(Suppl 2):P14–P21

    Article  PubMed  Google Scholar 

  • Good DA, Busfield F, Fletcher BH, Duffy DL, Kesting JB, Andersen J, Shaw JT (2002) Linkage of Paget disease of bone to a novel region on human chromosome 18q23. Am J Hum Genet 70:517–525

    Article  CAS  PubMed  Google Scholar 

  • Good DA, Busfield F, Fletcher BH, Lovelock PK, Duffy DL, Kesting JB, Andersen J, Shaw JT (2004) Identification of SQSTM1 mutations in familial Paget’s disease in Australian pedigrees. Bone 35:277–282

    Article  CAS  PubMed  Google Scholar 

  • Guanabens N, Garrido J, Gobbo M, Piga AM, del Pino J, Torrijos A, Descalzo MA, Garcia FJ, Cros JR, Carbonell J, Perez MR, Tornero J, Carmona L (2008) Prevalence of Paget’s disease of bone in Spain. Bone 43:1006–1009

    Article  PubMed  Google Scholar 

  • Haslam SI, Van Hul W, Morales-Piga A, Balemans W, San-Millan JL, Nakatsuka K, Willems P, Haites NE, Ralston SH (1998) Paget’s disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res 13:911–917

    Article  CAS  PubMed  Google Scholar 

  • Hocking L, Slee F, Haslam SI, Cundy T, Nicholson G, van Hul W, Ralston SH (2000) Familial Paget’s disease of bone: patterns of inheritance and frequency of linkage to chromosome 18q. Bone 26:577–580

    Article  CAS  PubMed  Google Scholar 

  • Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, Nicholson GC, Wuyts W, Van Hul W, Ralston SH (2001) Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet 69:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, Van Hul W, Ralston SH (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–2739

    Article  CAS  PubMed  Google Scholar 

  • Hocking LJ, Lucas GJ, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH (2004) Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res 19:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Pais TL, Wisdom JH, Weldon KS, Cody JD, Hansen MF, Singer FR, Leach RJ (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18:1748–1753

    Article  CAS  PubMed  Google Scholar 

  • Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD (2006) Expression of measles virus nucleocapsid protein in osteoclasts induces Paget’s disease-like bone lesions in mice. J Bone Miner Res 21:446–455

    Article  CAS  PubMed  Google Scholar 

  • Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J (2001) Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 69:528–543

    Article  CAS  PubMed  Google Scholar 

  • Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    Article  CAS  PubMed  Google Scholar 

  • Layfield R, Hocking LJ (2004) SQSTM1 and Paget’s disease of bone. Calcif Tissue Int 75:347–357

    Article  CAS  PubMed  Google Scholar 

  • Layfield R, Ciani B, Ralston SH, Hocking LJ, Sheppard PW, Searle MS, Cavey JR (2004) Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans 32:728–730

    Article  CAS  PubMed  Google Scholar 

  • Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH (2005) Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 20:227–231

    Article  CAS  PubMed  Google Scholar 

  • Lucas GJ, Riches PL, Hocking LJ, Cundy T, Nicholson GC, Walsh JP, Ralston SH (2008) Identification of a major locus for Paget’s disease on chromosome 10p13 in families of British descent. J Bone Miner Res 23:58–63

    Article  CAS  PubMed  Google Scholar 

  • Merlotti D, Gennari L, Galli B, Martini G, Calabro A, De Paola V, Ceccarelli E, Nardi P, Avanzati A, Nuti R (2005) Characteristics and familial aggregation of Paget’s disease of bone in Italy. J Bone Miner Res 20:1356–1364

    Article  PubMed  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  Google Scholar 

  • Morales-Piga AA, Rey-Rey JS, Corres-Gonzalez J, Garcia-Sagredo JM, Lopez-Abente G (1995) Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670

    Article  CAS  PubMed  Google Scholar 

  • Morissette J, Laurin N, Brown JP (2006) Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):P38–P44

    Article  CAS  PubMed  Google Scholar 

  • Mossetti G, Gennari L, Rendina D, De Filippo G, Merlotti D, De Paola V, Fusco P, Esposito T, Gianfrancesco F, Martini G, Nuti R, Strazzullo P (2008) Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treatment in patients with Paget’s disease of bone. Calcif Tissue Int 83:414–424

    Article  CAS  PubMed  Google Scholar 

  • Najat D, Garner T, Hagen T, Shaw B, Sheppard PW, Falchetti A, Marini F, Brandi ML, Long JE, Cavey JR, Searle MS, Layfield R (2009) Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res 24:632–642

    Article  CAS  PubMed  Google Scholar 

  • Neale SD, Schulze E, Smith R, Athanasou NA (2002) The influence of serum cytokines and growth factors on osteoclast formation in Paget’s disease. Qjm 95:233–240

    Article  CAS  PubMed  Google Scholar 

  • Poor G, Donath J, Fornet B, Cooper C (2006) Epidemiology of Paget’s disease in Europe: the prevalence is decreasing. J Bone Miner Res 21:1545–1549

    Article  PubMed  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  Google Scholar 

  • Rea SL, Walsh JP, Ward L, Yip K, Ward BK, Kent GN, Steer JH, Xu J, Ratajczak T (2006) A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res 21:1136–1145

    Article  CAS  PubMed  Google Scholar 

  • Rea SL, Walsh JP, Ward L, Magno AL, Ward BK, Shaw B, Layfield R, Kent GN, Xu J, Ratajczak T (2009) Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res 24:1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Rhodes EC, Johnson-Pais TL, Singer FR, Ankerst DP, Bruder JM, Wisdom J, Hoon DS, Lin E, Bone HG, Simcic KJ, Leach RJ (2008) Sequestosome 1 (SQSTM1) mutations in Paget’s disease of bone from the United States. Calcif Tissue Int 82:271–277

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208

    CAS  PubMed  Google Scholar 

  • Selby PL, Davies M, Mee AP (2006) Canine distemper virus induces human osteoclastogenesis through NF-kappaB and sequestosome 1/P62 activation. J Bone Miner Res 21:1750–1756

    Article  CAS  PubMed  Google Scholar 

  • Seton M, Choi HK, Hansen MF, Sebaldt RJ, Cooper C (2003) Analysis of environmental factors in familial versus sporadic Paget’s disease of bone—the New England Registry for Paget’s Disease of Bone. J Bone Miner Res 18:1519–1524

    Article  PubMed  Google Scholar 

  • Siris ES (1994) Epidemiological aspects of Paget’s disease: family history and relationship to other medical conditions. Semin Arthr Rheum 23:222–225

    Article  CAS  Google Scholar 

  • Siris ES, Ottman R, Flaster E, Kelsey JL (1991) Familial aggregation of Paget’s disease of bone. J Bone Miner Res 6:495–500

    Article  CAS  PubMed  Google Scholar 

  • Sofaer JA, Holloway SM, Emery AE (1983) A family study of Paget’s disease of bone. J Epidemiol Community Health 37:226–231

    Article  CAS  PubMed  Google Scholar 

  • Tiegs RD, Lohse CM, Wollan PC, Melton LJ (2000) Long-term trends in the incidence of Paget’s disease of bone. Bone 27:423–427

    Article  CAS  PubMed  Google Scholar 

  • Tilyard MW, Gardner RJ, Milligan L, Cleary TA, Stewart RD (1982) A probable linkage between familial Paget’s disease and the HLA loci. Aust N Z J Med 12:498–500

    CAS  PubMed  Google Scholar 

  • Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T (2000) Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab 18:177–184

    Article  CAS  PubMed  Google Scholar 

  • van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C (2002) Incidence and natural history of Paget’s disease of bone in England and Wales. J Bone Miner Res 17:465–471

    Article  PubMed  Google Scholar 

  • Wuyts W, Van Wesenbeeck L, Morales-Piga A, Ralston S, Hocking L, Vanhoenacker F, Westhovens R, Verbruggen L, Anderson D, Hughes A, Van Hul W (2001) Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone 28:104–107

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  CAS  PubMed  Google Scholar 

  • Yip KH, Feng H, Pavlos NJ, Zheng MH, Xu J (2006) p62 ubiquitin binding-associated domain mediated the receptor activator of nuclear factor-kappaB ligand-induced osteoclast formation: a new insight into the pathogenesis of Paget’s disease of bone. Am J Pathol 169:503–514

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Paget Foundation, the ‘Fonds voor Wetenschappelijk onderzoek’ (FWO, G.0117.06) and a network of excellence grant (EuroBoNeT) from the European Union (FP6) to W.V.H. S.B. is senior clinical investigator of the Fund for Scientific Research, Flanders, Belgium (F.W.O.-Vlaanderen) and holder of the Leuven University Chair in Gerontology and Geriatrics.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van Hul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, P.Y.J., Beyens, G., Boonen, S. et al. The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum Genet 128, 615–626 (2010). https://doi.org/10.1007/s00439-010-0888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0888-2

Keywords

Navigation