Skip to main content
Log in

Genetic Epidemiology of Paget’s Disease of Bone in Italy: sequestosome1/p62 Gene Mutational Test and Haplotype Analysis at 5q35 in a Large Representative Series of Sporadic and Familial Italian Cases of Paget’s Disease of Bone

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Families affected by Paget’s disease of bone frequently harbor mutations in the SQSTM1/p62 gene. In this multicentric study we collected 345 sporadic and 12 familial PDB cases throughout Italy, identifying 12 different mutations, 5 of which are newly reported and 3, D335E, A381V, and Y383X, external to the UBA domain. Subjects with truncating mutations, E396X, showed a significantly younger age at clinical diagnosis, while the Y383X subjects had a higher average number of affected skeletal sites. All the mutants exhibited the CGTG-H2 haplotype. In two pairs and one triad of unrelated Italian PDB families from different Italian regions, we detected a common SQSTM1/p62 mutation for each P392L, M404V, and G425R group. Since the CGTG-H2 haplotype frequency was also high in normal subjects, and genetic influence due to migratory fluxes of different ethnic groups exists in the Italian population, to refine the search for a more geographically specific founder effect, we extended the haplotype analysis in these families using polymorphic microsatellite repeat markers, within and flanking the SQSTM1/p62 locus, from chromosome 5q35, other than the exon 6 and 3′UTR polymorphisms. All mutant carriers from two of the three M404V families and from the G425R families exhibited common extended chromosome 5q35 haplotypes, IT01 and IT02, respectively, which may be reflecting influences of past migrations. This may be helpful in estimating the true rate of de novo mutations. We confirm the data on the existence of both a mutational hotspot at the UBA domain of SQSTM1/p62 and a founder effect in the PDB population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cooper C, Schafheutle K, Dennison E, Kellingray S, Guyer P, Barker D (1999) The epidemiology of Paget’s disease in Britain: is the prevalence decreasing? J Bone Miner Res 14(2):192–197

    Article  PubMed  CAS  Google Scholar 

  2. van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C (2002) Incidence and natural history of Paget’s disease of bone in England and Wales. J Bone Miner Res 17(3):465–471

    Article  PubMed  Google Scholar 

  3. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, van Hul W, Ralston SH (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11(22):735–739

    Article  Google Scholar 

  4. Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    Article  PubMed  CAS  Google Scholar 

  5. Johnson-Pais TL, Wisdom JH, Weldon KS, Cody JD, Hansen MF, Singer FR, Leach RJ (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18(10):1748–1753

    Article  PubMed  CAS  Google Scholar 

  6. Eekhoff EW, Karperien M, Houtsma D, Zwinderman AH, Dragoiescu C, Kneppers AL, Papapoulos SE (2004) Familial Paget’s disease in The Netherlands: occurrence, identification of new mutations in the sequestosome 1 gene, and their clinical associations. Arth Rheum 50(5):1650–1654

    Article  CAS  Google Scholar 

  7. Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo ML, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Maddali Bongi S, Di Fede G, Sferrazza C, Rini GB, Melchiorre D, Matucci-Cerinic M, Brandi ML (2004) Two novel mutations at exon 8 of Sequestosome 1 gene (SQSTM1) in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res 19(6):1013–1017

    Article  PubMed  CAS  Google Scholar 

  8. Falchetti A, Marini F, Masi L, Brandi ML (2004) Genetic aspects of Paget’s disease of bone. Clin Cases Miner Bone Metab 1(3):197–202

    Google Scholar 

  9. Good DA, Busfield F, Fletcher BH, Lovelock PK, Duffy DL, Kesting JB, Andersen J, Shaw JT (2004) Identification of SQSTM1 mutations in familial Paget’s disease in Australian pedigrees. Bone 35(1):277–282

    Article  PubMed  CAS  Google Scholar 

  10. Hocking LJ, Lucas GJ, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH (2004) Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res 19(7):1122–1127

    Article  PubMed  CAS  Google Scholar 

  11. Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W (2006) Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget’s disease of bone in an extended American family. Calcif Tissue Int 79(5):281–288

    Article  PubMed  CAS  Google Scholar 

  12. Rea SL, Walsh JP, Ward L, Yip K, Ward BK, Kent GN, Steer JH, Xu J, Ratajczak T (2006) A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res 21(7):1136–1144

    Article  PubMed  CAS  Google Scholar 

  13. Collet C, Michou L, Audran M, Chasseigneaux S, Hilliquin P, Bardin T, Lemaire I, Cornelis F, Launay JM, Orcel P, Laplanche JL (2007) Paget’s disease of bone in the French population: novel SQSTM1 mutations, functional analysis, and genotype-phenotype correlations. J Bone Miner Res 22(2):310–317

    Article  PubMed  CAS  Google Scholar 

  14. Falchetti A, Di Stefano M, Marini F, Del Monte F, Gozzini A, Masi L, Tanini A, Amedei A, Carossino A, Isaia G, Brandi ML (2005) Segregation of M404V mutation of p62/sequestosome 1 (SQSTM1/p62) gene with polyostotic Paget’s disease of bone in an Italian family. Arth Res Ther 7(6):R1289–R1294

    Article  CAS  Google Scholar 

  15. Langston AL, Johnston M, Robertson C, Campbell MK, Entwistle VA, Marteau TM, McCallum M, Ralston SH (2006) Protocol for stage 1 of the GaP study (Genetic Testing Acceptability for Paget’s Disease of Bone): an interview study about genetic testing and preventive treatment: would relatives of people with Paget’s disease want testing and treatment if they were available? BMC Health Serv Res 8(6):71 (available at: http://www.biomedcentral.com/1472-6963/6/71)

  16. Lucas GJA, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH (2005) Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 20(2):227–231

    Article  PubMed  CAS  Google Scholar 

  17. Morissette J, Laurin N, Brown JP (2006) Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):P38–P44

    Article  PubMed  CAS  Google Scholar 

  18. Bosch E, Calafell F, Comas D, Oefner PJ, Underhill PA, Bertranpetit J (2001) High-resolution analysis of human Y-chromosome variation shows a sharp discontinuity and limited gene flow between northwestern Africa and the Iberian Peninsula. Am J Hum Genet 68:1019–1029

    Article  PubMed  CAS  Google Scholar 

  19. Di Giacomo F, Luca F, Anagnou N, Ciavarella G, Corbo RM, Cresta M, Cucci F, Di Stasi L, Agostiano V, Giparaki M, Loutradis A, Mammi C, Michalodimitrakis EN, Papola F, Pedicini G, Plata E, Terrenato L, Tofanelli S, Malaspina P, Novelletto A (2003) Clinal patterns of human Y chromosomal diversity in continental Italy and Greece are dominated by drift and founder effects. Mol Phylogenet Evol 28:387–395

    Article  PubMed  CAS  Google Scholar 

  20. Semino O, Magri C, Benuzzi G, Lin AA, Al-Zahery N, Battaglia V, Maccioni L, Triantaphyllidis C, Shen P, Oefner PJ, Zhivotovsky LA, King R, Torroni A, Cavalli-Sforza LL, Underhill PA, Santachiara-Benerecetti AS (2004) Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: inferences on the neolithization of Europe and later migratory events in the Mediterranean area. Am J Hum Genet 74(5):1023–1034

    Article  PubMed  CAS  Google Scholar 

  21. Achilli A, Olivieri A, Pala M, Metspalu E, Fornarino S, Battaglia V, Accetturo M, Kutuev I, Khusnutdinova E, Pennarun E, Cerutti N, Di Gaetano C, Crobu F, Palli D, Matullo G, Santachiara-Benerecetti AS, Cavalli-Sforza LL, Semino O, Villems R, Bandelt HJ, Piazza A, Torroni A (2007) Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Am J Hum Genet 80(4):759–768

    Article  PubMed  CAS  Google Scholar 

  22. Selby PL, Davie MW, Ralston SH, Stone MD (2002) Guidelines on the management of Paget’s disease of bone. Bone 31:366–373

    Article  PubMed  CAS  Google Scholar 

  23. Singer FR (2004) The diagnosis of Paget’s disease of bone. Clin Cases Miner Bone Metab 1(3):215–218

    Google Scholar 

  24. Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J (2001) Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 69(3):528–543

    Article  PubMed  CAS  Google Scholar 

  25. Weeks DE, Sobel E, O’Connell JR, Lange K (1995) Computer programs for multilocus haplotyping of general pedigrees. Am J Hum Genet 56(6):1506–1507

    PubMed  CAS  Google Scholar 

  26. Alvarez L, Guanabens N, Peris P, Monegal A, Bedini JL, Deulofeu R, Martinez de Osaba MJ, Muñoz-Gomez J, Rivera-Fillat F, Ballesta AM (1995) Discriminative value of biochemical markers of bone turnover in assessing the activity of Paget’s disease. J Bone Miner Res 10:458–464

    Article  PubMed  CAS  Google Scholar 

  27. Seton M, Choi HK, Hansen MF, Sebaldt RJ, Cooper C (2003) Analysis of environmental factors in familial versus sporadic Paget’s disease of bone—the New England Registry for Paget’s Disease of Bone. J Bone Miner Res 18(8):1519–1524

    Article  PubMed  Google Scholar 

  28. Chung PY, Beyens G, Guañabens N, Boonen S, Papapoulos S, Karperien M, Eekhoff M, Van Wesenbeeck L, Jennes K, Geusens P, Offeciers E, Van Offel J, Westhovens R, Zmierczak H, Devogelaer JP, Van Hul W (2008) Founder effect in different European countries for the recurrent P392L SQSTM1 mutation in Paget’s disease of bone. Calcif Tissue Int 83(1):34–42

    Article  PubMed  CAS  Google Scholar 

  29. Beyens G, Van Hul E, Van Driessche K, Fransen E, Devogelaer JP, Vanhoenacker F, Van Offel J, Verbruggen L, De Clerck L, Westhovens R, Van Hul W (2004) Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget’s disease. Calcif Tissue Int 75(2):144–152

    Article  PubMed  CAS  Google Scholar 

  30. Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, Cundy T (2007) Delayed development of Paget’s disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res 22(3):411–415

    Article  PubMed  CAS  Google Scholar 

  31. Layfield R, Cavey JR, Najat D, Long J, Sheppard PW, Ralston SH, Searle MS (2006) p62 mutations, ubiquitin recognition and Paget’s disease of bone. Biochem Soc Trans 34(Pt 5):735–737

    PubMed  CAS  Google Scholar 

  32. Cavey JR, Ralston SH, Hocking LJ, Sheppard PW, Ciani B, Searle MS, Layfield R (2005) Loss of ubiquitin-binding associated with Paget’s disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 20:619–624

    Article  PubMed  CAS  Google Scholar 

  33. Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277

    Article  PubMed  CAS  Google Scholar 

  34. Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem 278:37409–37412

    Article  PubMed  CAS  Google Scholar 

  35. Layfield R, Ciani B, Ralston SH, Hocking LJ, Sheppard PW, Searle MS, Cavey JR (2004) Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans 32:728–730

    Article  PubMed  CAS  Google Scholar 

  36. Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    Article  PubMed  CAS  Google Scholar 

  37. Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, Zmierczak HG, Westhovens R, Van Offel J, Ralston SH, Devogelaer JP, Van Hul W (2007) Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res 22(7):1062–1071

    Article  PubMed  CAS  Google Scholar 

  38. Donáth J, Speer G, Poór G, Gergely P Jr, Tabák A, Lakatos P (2004) Vitamin D receptor, oestrogen receptor-alpha and calcium-sensing receptor genotypes, bone mineral density and biochemical markers in Paget’s disease of bone. Rheumatology (Oxford) 43(6):692–695

    Article  CAS  Google Scholar 

  39. Brandi ML, Falchetti A (2006) What is the relationship between Paget’s disease of bone and hyperparathyroidism? J Bone Miner Res 21(Suppl 2):P69–P74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the European Research Program, Fifth Framework Program “Quality of Life and Management of Living Resources Research and Technological Development Program” on “Genetic Markers for Osteoporosis,” by the Cofin MIUR, PNR 2001–2003 (FIRB), by the Fondazione Ente Cassa di Risparmio di Firenze, and by the Fondazione FIRMO (to M.L.B). F. Marini is the recipient of a fellowship from the “Jacopo Ficai” grant of the Fondazione Ente Cassa di Risparmio di Firenze. The authors are grateful to Mrs. Debora Strigoli for her technical assistance, to all colleagues and nurses dedicated to this project, and, in particular, to all PDB patients and relatives. Without their collaboration, this study could not be performed. This paper is published on behalf of the GenePage Project: Department of Internal Medicine, University of Florence; Department of Internal Medicine, University of Turin; Center for Metabolic Bone Disease, Division of Endocrinology, Istituto Auxologico Italiano, Milan; Ospedale Maggiore, Policlinico, Milan; Rheumatology Unit, Ospedale Torregalli, Florence; Rheumatology Unit, University of Pisa; Department of Rheumathology, University of Verona; Rheumatology Unit, University Federico II, Naples; Department of Clinical Medicine and Emerging Diseases, University of Palermo; Department of Medical and Surgical Sciences, University of Padua; Division Medicine I and Rheumatology, Department of Medicine and Surgery, University of Florence; Unit of Rheumatology—ASL Pescara; and Internal Medicine Unit, Federico II University of Naples, Italy.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Maria Luisa Brandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falchetti, A., Di Stefano, M., Marini, F. et al. Genetic Epidemiology of Paget’s Disease of Bone in Italy: sequestosome1/p62 Gene Mutational Test and Haplotype Analysis at 5q35 in a Large Representative Series of Sporadic and Familial Italian Cases of Paget’s Disease of Bone. Calcif Tissue Int 84, 20–37 (2009). https://doi.org/10.1007/s00223-008-9192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9192-8

Keywords

Navigation