Skip to main content

Advertisement

Log in

The denervated muscle: facts and hypotheses. A historical review

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Denervation changes in skeletal muscle (atrophy; alterations of myofibrillar expression, muscle membrane electrical properties, ACh sensitivity and excitation–contraction coupling process; fibrillation), and their possible causes are reviewed. All changes can be counteracted by muscle electrostimulation, while denervation-like effects can be caused by the complete conduction block in muscle nerve. These results do not support the hypothesis that the lack of neurotrophic, non-motor factors plays a role in denervation phenomena. Instead they support the view that the lack of neuromotor discharge is the only cause of the phenomena and that neuromotor activity is an essential factor in regulating muscle properties. However, some experimental results cannot apparently be explained by the lack of neuromotor impulses, and may still suggest that neurotrophic influences exist. A hypothesis is that neurotrophic factors, too feeble to maintain a role in completely differentiated, adult muscles, can concur with neuromotor activity in the differentiation of immature, developing muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Amood WS, Lewis DM (1987) The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat. J Physiol (Lond) 392:377–395

    CAS  Google Scholar 

  • Al-Amood WS, Lewis DM (1989) A comparison of the effects of denervation on the mechanical properties of rat and guinea-pig skeletal muscle. J Physiol (Lond) 414:1–16

    CAS  Google Scholar 

  • Albuquerque EX, Thesleff S (1968) A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat. Acta Physiol Scand 73:471–480

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Schuh FT, Kauffman FC (1971) Early membrane depolarization of the fast mammalian muscle after denervation. Pflügers Arch 328:36–50

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Warnick JE, Tasse JR, Sansone FM (1972) Effects of vinblastine and colchicine on neural regulation of fast and slow skeletal muscles of the rat. Exp Neurol 37:607–634

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Warnick JE, Sansone FM, Onur R (1974) Mechanisms of neurotrophic interactions. The effects of vinblastine and colchicine on neural regulation of muscle. In: Drachman DB (ed) Trophic functions of the neuron. Ann NY Acad Sci 228:224–243

  • Arancio O, Buffelli M, Cangiano A, Pasino E (1992) Nerve stump effects in muscle are independent of synaptic connections and are temporally correlated with nerve degeneration phenomena. Neurosci Lett 146:1–4

    PubMed  CAS  Google Scholar 

  • Ashley Z, Sutherland H, Lanmuller H, Unger E, Li F, Mayr W, Kern H, Jarvis JC, Salmons S (2005) Determination of the chronaxie and rheobase of denervated limb muscles in conscious rabbits. Artif Organs 29:212–215

    PubMed  Google Scholar 

  • Awad SS, Lightowlers RN, Young C, Chrzanowska-Lightowlers ZMA, Lømo T, Slater CR (2001) Sodium channel mRNAs at the neuromuscular junction: distinct patterns of accumulation and effects of muscle activity. J Neurosci 21:8456–8463

    PubMed  CAS  Google Scholar 

  • Axelsson J, Thesleff S (1959) A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol (Lond) 147:178–193

    CAS  Google Scholar 

  • Baker AJ, Lewis DM (1983) The effects of denervation on isotonic shortening velocity of rat fast and slow muscle. J Physiol (Lond) 345:56P

    Google Scholar 

  • Bandi E, Bernareggi A, Grandolfo M, Mozzetta C, Augusti-Tocco G, Ruzzier F, Lorenzon P (2005) Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis. J Physiol (Lond) 568:171–180

    CAS  Google Scholar 

  • Behrens MI, Vergara C (1992) Increase of apamin receptors in skeletal muscle induced by colchicine: possible role in myotonia. Am J Physiol Cell Physiol 263:C794–C802

    CAS  Google Scholar 

  • Bowman WC, Raper C (1968) Spontaneous fibrillary activity of denervated muscle. Nature 201:160–162

    Google Scholar 

  • Brodie IA (1966) Relaxing factor in denervated muscle: a possible explanation for fibrillations. Am J Physiol 211:1277–1280

    Google Scholar 

  • Brown GL (1937) The actions of acetylcholine on denervated mammalian and frog’s muscle. J Physiol (Lond) 89:438–461

    CAS  Google Scholar 

  • Brown MC, Holland RL, Ironton R (1978) Degenerating nerve products affect innervated muscle fibres. Nature 275:652–654

    PubMed  CAS  Google Scholar 

  • Buffelli M, Pasino E, Cangiano A (1997) Paralysis of rat skeletal muscle equally affects contractile properties as does permanent denervation. J Muscle Res Cell Motil 18:683–695

    PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Differentiation of fast and slow muscles in the cat hind limb. J Physiol (Lond) 150:399–416

    CAS  Google Scholar 

  • Burden SJ (2002) Building the vertebrate neuromuscular synapse. J Neurobiol 53:501–511

    PubMed  CAS  Google Scholar 

  • Butler-Browne GS, Bugaisky LB, Cuénoud S, Schwartz K, Whalen RG (1982) Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain. Nature 299:830–833

    PubMed  CAS  Google Scholar 

  • Cangiano A, Fried JA (1977) The production of denervation-like changes in rat skeletal muscle by colchicine, without interference with axonal transport or muscle activity. J Physiol (Lond) 265:63–84

    CAS  Google Scholar 

  • Cangiano A, Lutzemberger L (1980) Partial denervation in inactive muscle affects innervated and denervated fibres equally. Nature 285:233–235

    PubMed  CAS  Google Scholar 

  • Cangiano A, Lutzemberger L, Nicotra L (1977) Non-equivalence of impulse blockade and denervation in the production of membrane changes in rat skeletal muscle. J Physiol (Lond) 273:691–706

    CAS  Google Scholar 

  • Cangiano A, Magherini PC, Pasino E, Pellegrino M, Risaliti R (1984) Interaction of inactivity and nerve breakdown products in the origin of acute denervation changes in rat skeletal muscle. J Physiol (Lond) 355:345–365

    CAS  Google Scholar 

  • Cangiano A, Buffelli M, Busetto G, Tognana E, Pasino E (1997) Studies on anterograde trophic interactions based on general muscle properties. Arch Ital Biol 135:331–341

    PubMed  CAS  Google Scholar 

  • Carlsen H, Gundersen N (2000) Helix-loop-helix transcription factors in electrically active and inactive skeletal muscles. Muscle Nerve 23:1374–1380

    PubMed  CAS  Google Scholar 

  • Carraro U, Dalla Libera L, Catani C, Danieli Betto D (1982) Chronic denervation of rat diaphragm: selective maintenance of adult fast myosin heavy chains. Muscle Nerve 5:515–524

    PubMed  CAS  Google Scholar 

  • Carraro U, Dalla Libera L, Catani C (1983) Myosin light and heavy chains in muscle regenerating in absence of the nerve: transient appearance of the embryonic light chain. Exp Neurol 79:106–117

    PubMed  CAS  Google Scholar 

  • Carrasco DI, English AW (2003) Neurotrophin 4/5 is required for the normal development of the slow muscle phenotype in the rat soleus. J Exp Biol 206:2191–2200

    PubMed  CAS  Google Scholar 

  • Chen X, Mao Z, Liu S, Liu H, Wang X, Wu H, Wu Y, Zhao T, Fan W, Li Y, Yew DT, Kindler PM, Li L, He Q, Qian L, Wang X, Fan M (2005) Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell 16:3140–3151

    PubMed  CAS  Google Scholar 

  • Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990) Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev Biol 138:275–295

    PubMed  CAS  Google Scholar 

  • Corsi A, Midrio M, Granata AL, Corgnati A, Wolf D (1972) Lactate oxidation by skeletal muscle in vivo after denervation. Am J Physiol 223:219–222

    PubMed  CAS  Google Scholar 

  • Czéh G, Gallego R, Kudo N, Kuno M (1978) Evidence for the maintenance of motoneurone properties by muscle activity. J Physiol (Lond) 281:239–252

    Google Scholar 

  • Dai Z, Peng HB (1998) A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. J Cell Biol 141:1613–1624

    PubMed  CAS  Google Scholar 

  • d’Albis A, Couteaux R, Goubel F, Janmot C, Mira J-C (1995) Response to denervation of rabbit soleus and gastrocnemius muscles. Time-course study of postnatal changes in myosin isoforms, fiber types, and contractile properties. Biol Cell 85:9–20

    PubMed  CAS  Google Scholar 

  • d’Albis A, Couteaux R, Janmot C, Roulet A, Mira J-C (1988) Regeneration after cardiotoxin injury, of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174:103–110

    PubMed  CAS  Google Scholar 

  • d’Albis A, Goubel F, Couteaux R, Janmot C, Mira J-C (1994) The effect of denervation on myosin isoform synthesis in rabbit slow-type and fast-type muscles during terminal differentiation. Denervation induces differentiation into slow-type muscles. Eur J Biochem 223:249–258

    PubMed  CAS  Google Scholar 

  • Danieli D, Velussi C (1975) Modificazioni precoci delle proprietà contrattili di muscoli scheletrici dopo la denervazione. Arch Sci Biol 59:79–91

    Google Scholar 

  • Danieli-Betto D, Midrio M (1978) Effects of the spinal cord section and of subsequent denervation on the mechanical properties of fast and slow muscles. Experientia 34:55–56

    PubMed  CAS  Google Scholar 

  • Danieli Betto D, Volpin L, Midrio M (1978) Effects of disuse and nerve stump length on the development of fibrillation in denervated soleus muscle. Experientia 34:1582–1583

    PubMed  CAS  Google Scholar 

  • Davey DF, Cohen MW (1986) Localization of acetylcholine receptors and cholinesterase on nerve-contacted and noncontacted muscle cells grown in the presence of agents that block action potentials. J Neurosci 6:673–680

    PubMed  CAS  Google Scholar 

  • Davis HL, Kiernan JA (1980) Neurotrophic effects of sciatic nerve extract on denervated extensor digitorum longus muscle in the rat. Exp Neurol 69:124–134

    PubMed  CAS  Google Scholar 

  • Davis S, Aldrich TH, Valenzuela DM, Wong VV, Furth ME, Squinto SP, Yancopoulos SP (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63

    PubMed  CAS  Google Scholar 

  • Dedkof EI, Borisof AB, Carlson BM (2003) Dynamics of postdenervation atrophy of young and old skeletal muscles: differential responses of fiber types and muscle types. J Geront Biol Sci 58A:984–991

    Google Scholar 

  • Denny-Brown D (1929) The histological features of striped muscle in relation to its functional activity. Proc Roy Soc B 104:371–411

    Google Scholar 

  • De Smedt JE (1949) Les propriétés électrophysiologiques du muscle squelettique au cours de la dégénérescence wallérienne, et dans le cas d’une atrophie non wallérienne (résection tendineuse). Arch Int Physiol 57:98–101

    Google Scholar 

  • De Smedt JE (1950) Etude expérimental de la dégénérescence wallérienne e de la réinnervation du muscle squelettique. I. Évolution de la constante de temps d’excitation. Arch Int Physiol 58:23–68

    Google Scholar 

  • Dhoot GK (1992) Neural regulation of differentiation of rat skeletal muscle cell types. Histochemistry 97:479–486

    PubMed  CAS  Google Scholar 

  • Dulhunty AF (1985) Excitation–contraction coupling and contractile properties in denervated rat EDL and soleus muscles. J Muscle Res Cell Motil 6:207–225

    PubMed  CAS  Google Scholar 

  • Dulhunty AF, Gage PW (1983) Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J Physiol (Lond) 341:213–231

    CAS  Google Scholar 

  • Dulhunty AF, Gage PW (1985) Excitation–contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. J Physiol Lond 358:75–89

    PubMed  CAS  Google Scholar 

  • Eccles JC (1944) Investigations on muscle atrophies arising from disuse or tenotomy. J Physiol (Lond) 103:253–266

    CAS  Google Scholar 

  • Eccles JC, Eccles RM, Kozak W (1962) Further investigations on the influence of motoneurones on the speed of muscle contraction. J Physiol (Lond) 163:324–339

    CAS  Google Scholar 

  • Ecob-Prince MS, Jenkinson M, Butler-Browne GS, Whalen RG (1986) Neonatal and adult myosin heavy chain isoforms in a nerve-muscle culture system. J Cell Biol 103:995–1005

    PubMed  CAS  Google Scholar 

  • Ecob-Prince M, Hill M, Brown W (1989) Myosin heavy chain expression in human muscle cocultured with mouse spinal cord. J Neurol Sci 90:167–177

    PubMed  CAS  Google Scholar 

  • Eldridge L, Liebhold M, Steinbach JH (1981) Alterations in cat skeletal neuromuscular junctions following prolonged inactivity. J Physiol (Lond) 313:529–545

    CAS  Google Scholar 

  • Emmelin N, Malm L (1965) Development of supersensitivity as dependent on the length of degenerating nerve fibres. Quart J Exp Physiol 50:142–145

    PubMed  CAS  Google Scholar 

  • Erb W (1868) Dtsch Arch f klin Med. 4:535. Cit. by Beranek R (1962) Electrophysiology of denervated skeletal muscle. In: Gutmann E (eds) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 127–133

    Google Scholar 

  • Espat NJ, Auffenberg T, Rosenberg JJ, Rogy M, Martin D, Fang CH, Hasselgren PO, Copeland EM, Moldawer LL (1996) Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am J Physiol Regul Integr Comp Physiol 271:R185–R190

    CAS  Google Scholar 

  • Fernandez HL, Ramirez BU (1974) Muscle fibrillation induced by blockage of axoplasmic transport in motor nerves. Brain Res 79:385–395

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Duell MJ, Festoff BW (1979) Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J Neurobiol 10:441–454

    PubMed  CAS  Google Scholar 

  • Finol HJ, Lewis DM (1975) The effects of denervation on isometric contractions of rat skeletal muscle. J Physiol (Lond) 248:11P

    CAS  Google Scholar 

  • Finol HJ, Lewis DM, Owens R (1981) The effects of denervation on contractile properties of rat skeletal muscle. J Physiol (Lond) 319:81–92

    CAS  Google Scholar 

  • Flück M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    PubMed  Google Scholar 

  • Fraysse B, Guillet C, Huchet-Cadiou C, Camerino DC, Gascan H, Leoty C (2000) Ciliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle. J Appl Physiol 88:1623–1630

    PubMed  CAS  Google Scholar 

  • Gage PW, Lamb GD, Wakefield BT (1989) Transient and persistent sodium currents in normal and denervated mammalian skeletal muscle. J Physiol (Lond) 418:427–439

    CAS  Google Scholar 

  • Gauthier GF, Dunn RA (1973) Ultrastructural and cytochemical features of mammalian skeletal muscle fibres following denervation. J Cell Sci 12:525–547

    PubMed  CAS  Google Scholar 

  • Geiger PC, Cody MJ, MacKen R, Bayrd M, Sieck GC (2001) Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 90:1196–1204

    PubMed  CAS  Google Scholar 

  • Geiger OC, Bayley JP, Zhan WZ, Mantilla CB, Sieck GC (2003) Denervation-induced changes in myosin heavy chain expression in the rat diaphragm muscle. J Appl Physiol 95:611–619

    PubMed  CAS  Google Scholar 

  • Germinario E, Esposito A, Megighian A, Midrio M, Biral D, Betto R, Danieli-Betto D (2002) Early changes of type 2B fibers after denervation of rat EDL skeletal muscle. J Appl Physiol 92:2045–2052

    PubMed  Google Scholar 

  • Ginetzinsky AG, Shamarina NM (1942) The tonomotor phenomenon in denervated muscle. (DSIR translation RTS 1710). Adv Bod Biol (USSR) Usp Sovrem Biol 15:283–294. Cit by Thesleff (1974)

    Google Scholar 

  • Graff GLA, Joffroy A, Gueuning C (1968) Persistance des caractéristiques biochimiques du gastrocnémien dénervé chez le Rat après abolition des fibrillations musculaires par le sulfate de quinidine. CR Séances Soc Biol Filiales 162:1631–35

    CAS  Google Scholar 

  • Graff GLA, Gueuning C, Glupczynski Y, Goldschmidt P (1980) Systemic effects of colchicine on phosphate metabolism in innervated and denervated, slow and fast muscles of the rat. Arch Int Physiol Biochim 88:393–405

    PubMed  CAS  Google Scholar 

  • Grossman EJ, Roy RR, Talmadge RJ, Zhong H, Edgerton VR (1998) Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers. Muscle Nerve 2:375–389

    Google Scholar 

  • Guillet C, Huchet-Cadiou C, Gascan H, Leoty C (1998) Changes in CNTF receptor alpha expression in rat skeletal muscle during the recovery period after hindlimb suspension. Acta Physiol Scand 163:273–278

    PubMed  CAS  Google Scholar 

  • Guillet C, Auguste P, Mayo W, Kreher P, Gascan H (1999) Ciliary neurotrophic factor is a regulator of muscular strength in aging. J Neurosci 19:1257–1262

    PubMed  CAS  Google Scholar 

  • Gundersen K (1985) Early effects of denervation on isometric and isotonic contractile properties of rat skeletal muscles. Acta Physiol Scand 124:549–555

    PubMed  CAS  Google Scholar 

  • Gundersen K (1998) Determination of muscle contractile properties: the importance of the nerve. Acta Physiol Scand 162:333–341

    PubMed  CAS  Google Scholar 

  • Gunning P, Hardeman E (1991) Multiple mechanisms regulate muscle fiber diversity. FASEB J 5:3064–3070

    PubMed  CAS  Google Scholar 

  • Guth L (1968) “Trophic” influences of nerve on muscle. Physiol Rev 48:645–687

    Google Scholar 

  • Gutmann E (1948) Effect of delay of innervation on recovery of muscle after nerve lesions. J Neurophysiol 11:279–294

    PubMed  CAS  Google Scholar 

  • Gutmann E (1963) Evidence for the trophic function of the nerve cell in neuromuscular relations. In: Gutmann E, Hnik P (eds) The effect of use and disuse on neuromuscular functions. Elsevier, Amsterdam, pp 29–34

    Google Scholar 

  • Gutmann E (1976a) Neurotrophic relations. Ann Rev Physiol 38:177–216

    CAS  Google Scholar 

  • Gutmann E (1976b) Problems in differentiating trophic relationships between nerve and muscle cells. In: Thesleff S (ed) Motor innervation of muscle. Academic, London, pp 323–343

    Google Scholar 

  • Gutmann E, Hník P (1962) Denervation studies in research of neurotrophic relationships. In: Gutmann E (ed) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 13–56

    Google Scholar 

  • Gutmann E, Zelená J (1962) Morphological changes in the denervated muscles. In: Gutmann E (ed) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 57–102

    Google Scholar 

  • Hämäläinen N, Pette D (2001) Myosin and SERCA isoform expression in denervated slow-twitch muscle of euthyroid and hyperthyroid rabbits. J Muscle Res Cell Motil 22:453–457

    PubMed  Google Scholar 

  • Harris JB, Thesleff S (1971) Studies on tetrodotoxin resistant action potentials in denervated skeletal muscles. Acta Physiol Scand 83:382–388

    PubMed  CAS  Google Scholar 

  • Harris J, Thesleff S (1972) Nerve stump length and membrane changes in denervated skeletal muscle. Nature (New Biol) 236:60–61

    CAS  Google Scholar 

  • Heck CS, Davis HL (1988) Effect of denervation and nerve extract on ultrastructure of muscle. Exp Neurol 100:139–153

    PubMed  CAS  Google Scholar 

  • Heeroma JH, Plomp JJ, Roubos EW, Verhage M (2003) Development of the mouse neuromuscular junction in the absence of regulated secretion. Neuroscience 120:733–744

    PubMed  CAS  Google Scholar 

  • Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM, DiStefano PS (1994) Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell 76:493–504

    PubMed  CAS  Google Scholar 

  • Hines HM, Knowlton GC (1933) Changes in the skeletal muscle of the rat following denervation. Am J Physiol 104:379–391

    CAS  Google Scholar 

  • Hník P, Škorpil V (1962) Fibrillation activity in denervated muscle. In: Gutmann E (eds) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 136–150

    Google Scholar 

  • Hník P, Škorpil V, Vyklický L (1962) Diagnosis and therapy of denervation muscle atrophy. In: Gutmann E (ed) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 433–466

    Google Scholar 

  • Hodgson JA, Roy RR, Higuchi N, Monti RJ, Zhong H, Grossman E, Edgerton VR (2005) Does daily activity level determine muscle phenotype? J Exp Biol 208:3761–3770

    PubMed  Google Scholar 

  • Hofmann WW, Thesleff S (1972) Studies on the trophic influence of nerve in skeletal muscle. Eur J Pharmacol 20:256–260

    PubMed  CAS  Google Scholar 

  • Huang S, Wang F, Hong G, Wan S, Kang H (2002) Protective effects of ciliary neurotrophic factor on denervated skeletal muscle. J Huanzhong Univ Sci Technol Med Sci 22:148–151

    Article  CAS  Google Scholar 

  • Hyatt J-PK, Roy RR, Baldwin KM, Edgerton VR (2003) Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol Cell Physiol 285:C1161–C1173

    PubMed  CAS  Google Scholar 

  • Hyatt J-PK, Roy RR, Baldwin KM, Wemig A, Edgerton VR (2005) Activity-unrelated neural control of myogenic factors in a slow muscle. Muscle Nerve 33:49–60

    Google Scholar 

  • Izumi SI, Tsubahara A, Chino N, Mineo K (1998) Effects of dantrolene sodium on fibrillation potentials in denervated rat muscles. Muscle Nerve 21:1797–1799

    PubMed  CAS  Google Scholar 

  • Jaweed MM, Herbison GJ, Ditunno JF (1975) Denervation and reinnervation of fast and slow muscles. A histochemical study in rats. J Histoch Cytochem 23:808–827

    CAS  Google Scholar 

  • Johns TR, Thesleff S (1961) Effects of motor inactivation on the chemical sensitivity of skeletal muscle. Acta Physiol Scand 51:136–141

    PubMed  CAS  Google Scholar 

  • Jones R, Vrbová G (1970) Effect of muscle activity on denervation hypersensitivity. J Physiol (Lond) 210:144P–145P

    CAS  Google Scholar 

  • Jones R, Vrbová G (1974) Two factors responsible for the development of denervation hypersensitivity. J Physiol (Lond) 236:517–538

    CAS  Google Scholar 

  • Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, Lømo T (2005) ‘Fast’ and ‘slow’ muscle fibres in hindlimb muscles of adult rat regenerate from intrinsecally different satellite cells. J Physiol (Lond) 562:847–857

    CAS  Google Scholar 

  • Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL (1990) Primary structure and expression of a sodium channel characteristics of denervated and immature rat skeletal muscle. Neuron 4:233–242

    PubMed  CAS  Google Scholar 

  • Kami K, Morikawa Y, Sekimoto M, Senba E (2000) Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscles. J Histochem Cytochem 48:1202–1213

    Google Scholar 

  • Karpati G, Engel W (1968) Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section and skeletal fixation. Neurology 18:681–692

    PubMed  CAS  Google Scholar 

  • Kean CJC, Lewis DM, McGarrick JD (1975) Dynamic properties of denervated fast and slow twitch muscle of the cat. J Physiol (Lond) 237:103–113

    Google Scholar 

  • Kelly AM, Rubinstein NA (1980) Patterns of myosin synthesis in regenerating normal and denervated muscles of the rat. In: Pette D (ed) Plasticity of the muscle. de Gruyter, Berlin, pp 161–175

    Google Scholar 

  • Kim SJ, Roy RR, Zhong H, Ambartsumyan L, Edgerton VR (2003) Effects of high-load, short- duration isometric contractions on the mechanical properties of an inactive fast hind limb muscle. Soc Neurosci Abstr 392.28

  • Kirsch GE, Anderson MF (1986) Sodium channel kinetics in normal and denervated rabbit muscle membrane. Muscle Nerve 9:738–747

    PubMed  CAS  Google Scholar 

  • Kotsias BA, Muchnik S (1987) Mechanical and electrical properties of denervated skeletal muscles. Exp Neurol 97:516–528

    PubMed  CAS  Google Scholar 

  • Kotsias BA, Venosa RA (2001) Sodium influx during action potential in innervated and denervated rat skeletal muscles. Muscle Nerve 24:1026–1033

    PubMed  CAS  Google Scholar 

  • Kowalchuk N, McComas A (1987) Effects of impulse blockade on the contractile properties of rat skeletal muscle. J Physiol (Lond) 382:255–266

    CAS  Google Scholar 

  • Kues WA, Brenner HR, Sakmann B, Witzemann V (1995) Local neurotrophic repression of gene transcripts encoding fetal AChR at rat neuromuscular synapses. J Cell Biol 130:949–957

    PubMed  CAS  Google Scholar 

  • Kuffler SW (1943) Specific excitability of the endplate region in normal and denervated muscle. J Neurophysiol 6:99–110

    CAS  Google Scholar 

  • Kummer TT, Misgeld T, Lichtman JW, Sanes JR (2004) Nerve-independent formation of a topologically complex postsynaptic apparatus. J Cell Biol 164:1077–1087

    PubMed  CAS  Google Scholar 

  • Kuno M (1984) A hypothesis for neural control of the speed of muscle contraction in the mammal. Adv Biophys 17:69–95

    PubMed  CAS  Google Scholar 

  • Langley JN (1916) Observations on denervated muscle. J Physiol (Lond) 50:335–344

    CAS  Google Scholar 

  • Langley JN, Itagaki M (1917) The oxygen use of denervated muscle. J Physiol (Lond) 51:202–210

    CAS  Google Scholar 

  • Langley JN, Kato T (1915) The rate of loss of weight in skeletal muscle after nerve section with some observations on the effects of stimulation and other treatment. J Physiol (Lond) 49:432–440

    CAS  Google Scholar 

  • Lefeuvre B, Crossin F, Fotaine-Perus J, Bandman E, Gardahaut MF (1996) Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech Dev 58:115–127

    PubMed  CAS  Google Scholar 

  • Lewis DM (1962) The effects of denervation on the speeds of contraction of striated muscle. J Physiol (Lond) 161:24P

    Google Scholar 

  • Lewis DM (1972) The effect of denervation on the mechanical and electrical responses of fast and slow mammalian twitch muscle. J Physiol (Lond) 222:51–75

    CAS  Google Scholar 

  • Lewis DM, Robinson AJ, Tufft NR (1988) Fibrillation in the denervated skeletal muscle of the anaesthetized rat and guinea-pig. J Physiol (Lond) 403:69P

    Google Scholar 

  • Lewis DM, Al-Almood WS, Schmalbruch H (1997) Effects of long-term phasic electrical stimulation on denervated soleus muscle: guinea-pig contrasted with rat. J Muscle Res Cell Motil 18:573–586

    PubMed  CAS  Google Scholar 

  • Li C-L (1960) Mechanism of fibrillation potentials in denervated mammalian muscle. Science 132:1889–1890

    PubMed  CAS  Google Scholar 

  • Lin W, Burgess RW, Dominguez B, Pfaff SI, Sanes JR, Lee K-F (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    PubMed  CAS  Google Scholar 

  • Lømo T, Rosenthal J (1972) Control of ACh sensitivity by muscle activity in the rat. J Physiol (Lond) 221:493–513

    Google Scholar 

  • Lømo T, Westgaard RH (1975) Further studies on the control of ACh sensitivity by muscle activity in the rat. J Physiol (Lond) 252:603–626

    Google Scholar 

  • Lu DX, Huang SK, Carlson BM (1997) Electron microscopic study of long-term denervated rat skeletal muscle. Anat Rec 248:355–365

    PubMed  CAS  Google Scholar 

  • Luco JV, Eyzaguirre C (1955) Fibrillation and hypersensitivity to ACh in denervated muscle: effect of length of degenerating nerve fibers. J Neurophysiol 18:65–73

    PubMed  CAS  Google Scholar 

  • Lupa MT, Krzemien DM, Schaller KL, Caldwell JH (1995) Expression and distribution of sodium channels in short- and long-term denervated rodent skeletal muscles. J Physiol (Lond) 483:109–118

    CAS  Google Scholar 

  • Manolov S, Ovtscharoff W (1974) Ultrastructural changes in the muscle cells of denervated muscles of rat. Mikrosk Anat Forsch 88:726–744

    CAS  Google Scholar 

  • Margreth A, Salviati G, Di Mauro S, Turati G (1972) Early biochemical consequences of denervation in fast and slow skeletal muscles and their relationship to neural control over muscle differentiation. Biochem J 126:1099–1110

    PubMed  CAS  Google Scholar 

  • Markelonis G, Tae Hwan OH (1979) A sciatic nerve protein has a trophic effect on development and maintenance of skeletal muscle cells in culture. Proc Natl Acad Sci USA 76:2470–2474

    PubMed  CAS  Google Scholar 

  • Marques MJ, Neto HS (1997) Ciliary neurotrophic factor stimulates in vivo myotube formation in mice. Neurosci Lett 234:43–46

    PubMed  CAS  Google Scholar 

  • Martin D, Merkel E, Tucker KK, McManaman JL, Albert D, Relton J, Russel DA (1996) Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle. Am J Physiol Regul Integr Comp Physiol 271:R1422–R1428

    CAS  Google Scholar 

  • Mavrina RA, Khamitov KhS (1984) Contractile characteristics of developing fast and slow muscles during colchicine blockade of axoplasmic transport in their nerves. Fiziol Zh SSSR Im I M Sechenova 70:1564–1567 (Russian article, read only as Abstract in PubMed)

  • McArdle JJ (1983) Molecular aspects of the trophic influence of nerve on muscle. Progr Neurobiol 21:135–198

    CAS  Google Scholar 

  • McCullagh KJA, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, LømoT, Schiaffino S (2004) NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci USA 101:10590–10595

    PubMed  CAS  Google Scholar 

  • McMahan UJ (1990) The agrin hypothesis. Cold Spring Harbour Symp Quant Biol 50:407–418

    Google Scholar 

  • Megighian A, Germinario E, Rossini K, Midrio M, Danieli-Betto D (2001) Nerve control of type 2A MHC isoform expression in regenerating slow skeletal muscle. Muscle Nerve 24:47–53

    PubMed  CAS  Google Scholar 

  • Michel RN, Parry DJ, Dunn SE (1996) Regulation of myosin heavy chain expression in adult rat hindlimb muscles during short-term paralysis: comparison of denervation and tetrodotoxin-induced neural inactivation. FEBS Lett 391:39–44

    PubMed  CAS  Google Scholar 

  • Midrio M, Bouquet F, Durighello M, Princi T (1973) Role of muscular disuse in the genesis of fibrillation in denervated muscle. Experientia 29:58–59

    PubMed  CAS  Google Scholar 

  • Midrio M, Caldesi-Valeri V, Princi T, Ruzzier F, Velussi C (1977) Differential effects of disuse preceding denervation on the onset and development of fibrillation in fast and slow muscles. Experientia 33:209–211

    PubMed  CAS  Google Scholar 

  • Midrio M, Danieli Betto D, Betto R, Noventa D, Antico F (1988) Cordotomy-denervation interactions on contractile and myofibrillar properties of fast and slow muscles in the rat. Exp Neurol 100:216–236

    PubMed  CAS  Google Scholar 

  • Midrio M, Danieli-Betto D, Megighian A, Velussi C, Catani C, Carraro U (1992) Slow-to-fast transformation of denervated soleus muscle of the rat, in the presence of an antifibrillatory drug. Pflügers Arch 420:446–450

    PubMed  CAS  Google Scholar 

  • Midrio M, Danieli-Betto D, Megighian A, Betto R (1997) Early effects of denervation on sarcoplasmic reticulum properties of slow-twitch rat muscle fibres. Pflügers Arch 434:398–405

    PubMed  CAS  Google Scholar 

  • Midrio M, Danieli-Betto D, Esposito A, Megighian A, Carraro U, Catani C, Rossini K (1998) Lack of type 1 and type 2A myosin heavy chain isoforms in rat slow muscle regenerating during chronic nerve block. Muscle Nerve 21:226–232

    PubMed  CAS  Google Scholar 

  • Miledi R (1960a) The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J Physiol (Lond) 151:1–23

    CAS  Google Scholar 

  • Miledi R (1960b) Properties of regenerating neuromuscular synapses in the frog. J Physiol (Lond) 154:190–205

    CAS  Google Scholar 

  • Miledi R, Slater CR (1970) On the degeneration of rat neuromuscular junctions after nerve section. J Physiol (Lond) 207:507–528

    CAS  Google Scholar 

  • Miyata H, Zhan WZ, Prakash YS, Sieck GC (1995) Myoneural interactions affect diaphragm muscle adaptations to inactivity. J Appl Physiol 79:1640–1649

    PubMed  CAS  Google Scholar 

  • Mousavi K, Miranda W, Parry DJ (2002) Neurotrophic factors enhance the survival of muscle fibers in EDL, but not SOL, after neonatal nerve injury. Am J Physiol Cell Pysiol 283:C950–C959

    CAS  Google Scholar 

  • Mousavi K, Parry DJ, Jasmin BJ (2004) BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am J Physiol Cell Physiol 287:C22–C29

    PubMed  CAS  Google Scholar 

  • Nicholls JG (1956) The electrical properties of denervated skeletal muscle. J Physiol (Lond) 131:1–12

    CAS  Google Scholar 

  • Niederle B, Mayr R (1978) Course of denervation atrophy in type I and type II fibres of rat extensor digitorum longus muscle. Anat Embryol 153:9–21

    PubMed  CAS  Google Scholar 

  • Palexas GN, Savage N, Isaacs H (1982) Characteristics of sarcoplasmic reticulum from normal and denervated rat skeletal muscle. Biochem J 200:11–15

    Google Scholar 

  • Pappone PA (1980) Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol (Lond) 306:377–410

    CAS  Google Scholar 

  • Pasino E, Buffelli M, Arancio O, Busetto G, Salviati A, Cangiano A (1996) Effects of long-term conduction block on membrane properties of reinnervated and normally innervated rat skeletal muscle. J Physiol (Lond) 497:457–472

    CAS  Google Scholar 

  • Pellegrino C, Franzini C (1963) An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J Cell Biol 17:327–349

    PubMed  CAS  Google Scholar 

  • Péréon Y, Sorrentino V, Dettbarn C, Noireaud J, Palade P (1997) Dihydropyridine receptor gene expression in long-term denervated rat muscles. Biochem Biophys Res Com 240:612–617

    PubMed  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90:1119–1124

    PubMed  CAS  Google Scholar 

  • Pette D (2002) The adaptive potential of skeletal muscle fibers. Can J Appl Physiol 27:423–448

    PubMed  Google Scholar 

  • Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  PubMed  CAS  Google Scholar 

  • Pierotti DJ, Roy RR, Bodine-Fowler SC, Hodgson JA, Edgerton VR (1991) Mechanical and morphological properties of chronically inactive cat tibialis anterior motor units. J Physiol (Lond) 444:175–192

    CAS  Google Scholar 

  • Purves D, Sakmann B (1974a) The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture. J Physiol (Lond) 237:157–182

    CAS  Google Scholar 

  • Purves D, Sakmann B (1974b) Membrane properties underlying spontaneous activity of denervated muscle fibres. J Physiol (Lond) 239:125–153

    CAS  Google Scholar 

  • Ramirez BU (1984) Axonal transport blockade and denervation have qualitatively different effects upon skeletal muscle metabolism. J Neurobiol 15:119–126

    PubMed  CAS  Google Scholar 

  • Ramirez BU, Behrens MI, Vergara C (1996) Neural control of the expression of a Ca2+-activated K+ channel involved in the induction of myotonic-like characteristics. Cell Mol Neurobiol 16:39–49

    PubMed  CAS  Google Scholar 

  • Ramirez BU, Retamal L, Vergara C (2003) Ciliary neurotrophic factor (CNTF) affects the excitable and contractile properties of innervated skeletal muscles. Biol Res 36:303–312

    Google Scholar 

  • Ravin A (1940) Effects of quinine on mammalian skeletal muscle. Am J Physiol 131:228–239

    CAS  Google Scholar 

  • Redfern P, Thesleff S (1971) Action potential generation in denervated rat skeletal muscle. II. The action of tetrototoxin. Acta Physiol Scand 82:70–78

    PubMed  CAS  Google Scholar 

  • Robbins N, Carlson D (1979) Early changes in muscle glucose-6-phosphate dehydrogenase activity after denervation: locus and dependence on nerve stump length. Brain Res 177:145–156

    PubMed  CAS  Google Scholar 

  • Robert ED, Oester YT (1970) Absence of supersensitivity to acetylcholine in innervated muscle subjected to a prolonged pharmacologic nerve block. J Pharmacol Exp Ther 174:133–140

    PubMed  CAS  Google Scholar 

  • Robinson A, Tufft N, Lewis DM (1991) A comparison of fibrillation in denervated skeletal muscle of the anaesthetized rat and guinea-pig. J Muscle Res Cell Motil 12:271–280

    PubMed  CAS  Google Scholar 

  • Rodrigues AC de, Geuna S, Perezin de Mattos Rodrigues S, Dal Pai Silva M, Ferrari Aragon F (2002) Satellite cells and myonuclei in neonatally denervated rat muscle. It J Anat Embryol 107:51–56

    Google Scholar 

  • Rosenblueth A, Luco JV (1937) A study of denervated mammalian skeletal muscle. Am J Physiol 120:781–797

    Google Scholar 

  • Roy RR, Pierotti DJ, Flores V, Rudolph W, Edgerton VR (1992) Fiber size and type adaptation to spinal isolation and cyclical passive stretch in cat hindlimb. J Anat 180:491–499

    Google Scholar 

  • Roy RR, Eldridge L, Baldwin KM, Edgerton VR (1996) Neural influence on slow muscle properties: inactivity with and without cross-reinnervation. Muscle Nerve 19:707–714

    PubMed  CAS  Google Scholar 

  • Roy RR, Zhong H, Monti RJ, Vallance HA, Edgerton VR (2002) Mechanical properties of the electrical silent adult rat soleus muscle. Muscle Nerve 26:404–412

    PubMed  Google Scholar 

  • Roy RR, Zhong H, Siengthai B, Edgerton VR (2005) Activity dependent influences are greater for fibers in rat medial gastrocnemius than tibialis anterior muscle. Muscle Nerve 32:473–482

    PubMed  Google Scholar 

  • Sakakima H, Kawamata S, Kai S, Ozawa J, Matsuura N (2000) Effects of short-term denervation and subsequent reinnervation on motor endplates and the soleus muscle in the rat. Arch Histol Cytol 63:495–506

    PubMed  CAS  Google Scholar 

  • Salafsky B, Bell J, Prewitt MA (1968) Development of fibrillation potentials in denervated fast and slow skeletal muscle. Am J Physiol 215:637–643

    PubMed  CAS  Google Scholar 

  • Salmons S, Vrbová G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201:535–549

    CAS  Google Scholar 

  • Salmons S, Ashley Z, Sutherland H, Russold MF, Li F, Jarvis JC (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Org 29:199–202

    Google Scholar 

  • Salvatori S, Damiani E, Zorzato F, Volpe P, Pierobon S, Quaglino D Jr, Salviati G, Margreth A (1988) Denervation-induced proliferative changes of triads in rabbit skeletal muscle. Muscle Nerve 11:1246–1259

    PubMed  CAS  Google Scholar 

  • Salviati G, Biasia E, Aloisi M (1986) Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region. Nature 322:637–639

    PubMed  CAS  Google Scholar 

  • Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–424

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Serrano AL (2002) Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23:569–575

    PubMed  CAS  Google Scholar 

  • Schmalbruch H (1990) Growth and denervation response of skeletal muscle fibers of newborn rats. Muscle Nerve 13:421–432

    PubMed  CAS  Google Scholar 

  • Schuetze SM, Role SW (1987) Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci 10:403–457

    PubMed  CAS  Google Scholar 

  • Schulte L, Peters D, Taylor J, Navarro J, Kandarian S (1994) Sarcoplasmic reticulum Ca2+ pump expression in denervated skeletal muscle. Am J Physiol 267:C617–C622

    PubMed  CAS  Google Scholar 

  • Sendtner M, Carrol P, Holtmann B, Hughes RA, Thoenen H (1994) Ciliary neurotrophic factor. J Neurobiol 25:1436–1453

    PubMed  CAS  Google Scholar 

  • Sesodia S, Choksi RM, Nemeth PM (1994) Nerve-dependent recovery of metabolic pathways in regenerating soleus muscle. J Muscle Res Cell Motil 15:573–581

    PubMed  CAS  Google Scholar 

  • Smith JW, Thesleff S (1976) Spontaneous activity in denervated mouse diaphragm muscle. J Physiol (Lond) 257:171–186

    CAS  Google Scholar 

  • Solandt DY, Magladery JW (1940) The relation of fibrillation to atrophy in denervated muscle. Brain 63:255–263

    Google Scholar 

  • Solandt DY, Magladery JW (1942) A comparison of effects of upper and lower motor neurone lesions on skeletal muscle. J Neurophysiol 5:373–380

    Google Scholar 

  • Solandt DY, Partridge RC, Hunter J (1943) The effect of skeletal fixation on skeletal muscle. J Neurophysiol 6:17–22

    Google Scholar 

  • Spector SA (1985a) Effects of elimination of activity on contractile and histochemical properties of rat soleus muscle. J Neurosci 5:2177–2188

    PubMed  CAS  Google Scholar 

  • Spector SA (1985b) Trophic effects on the contractile and histochemical properties of rat soleus muscle. J Neurosci 5:2189–2196

    PubMed  CAS  Google Scholar 

  • Sreter FA (1970) Effect of denervation on fragmented sarcoplasmic reticulum of white and red muscle. Exp Neurol 29:52–64

    PubMed  CAS  Google Scholar 

  • Syrový I, Gutmann E, Melichna J (1971) Differential response of myosin ATPase activity and contraction properties of fast and slow rabbit muscles following denervation. Experientia 27:1426–1427

    PubMed  Google Scholar 

  • Syrový I, Gutmann E, Melichna J (1972) The effect of denervation on contraction and myosin properties of fast and slow rabbit and cat muscles. Physiol Bohemoslov 21:353–359

    PubMed  Google Scholar 

  • Takekura H, Kasuga N, Kitada K, Yoshioka T (1996) Morphological changes in the triads and sarcoplasmic reticulum of rat slow and fast muscle fibres following denervation and immobilization. J Muscle Res Cell Motil 17:391–400

    PubMed  CAS  Google Scholar 

  • Talon S, Giroux-Metges M-A, Pennec JP, Guillet C, Gascan H, Gioux M (2005) Rapid protein kinase C-dependent reduction of rat skeletal muscle voltage-gated sodium channels by ciliary neurotrophic factor. J Physiol (Lond) 565:827–841

    CAS  Google Scholar 

  • Tate CA, Bick RJ, Myers TD, Pitts BJ, Van Winkle WB, Entmann ML (1982) Alteration of sarcoplasmic reticulum after denervation of chicken pectoralis muscle. Biochem J 210:339–344

    Google Scholar 

  • Thesleff S (1963) Spontaneous electrical activity in denervated rat skeletal muscle. In: Gutmann E, Hník P (eds) The effect of use and disuse on neuromuscular functions. Elsevier, Amsterdam, pp 41–61

    Google Scholar 

  • Thesleff S (1974) Physiological effects of denervation of muscle. Ann NY Acad Sci 228:89–104

    PubMed  CAS  Google Scholar 

  • Thesleff S, Ward MR (1975) Studies on the mechanism of fibrillation potentials in denervated muscle. J Physiol (Lond) 244:313–323

    CAS  Google Scholar 

  • Tiedt TN, Lewis Wisler P, Younkin SG (1977) Neurotrophic regulation of resting membrane potential and acetylcholine sensitivity in rat extensor digitorum longus mscle. Exp Neurol 57:766–791

    PubMed  CAS  Google Scholar 

  • Titeca J (1935) Étude des modifications functionnelles du nerf au cours de sa dégénérescence wallérienne. Arch Int Physiol 41:1–56

    Google Scholar 

  • Tomanek RJ, Lund DD (1973) Degeneration of different types of skeletal muscle fibres. I. Denervation. J Anat 116:395–407

    PubMed  CAS  Google Scholar 

  • Tomanek RJ, Lund DD (1974) Degeneration of different types of skeletal muscle fibres. II. Immobilization. J Anat 118:531–541

    PubMed  CAS  Google Scholar 

  • Tower S (1935) Atrophy and degeneration in skeletal muscle. Am J Anat 56:1–43

    Google Scholar 

  • Tower S (1937) Trophic control of non-nervous tissue by the nervous system: a study of muscle and bone innervated from an isolated and quiescent region of spinal cord. J comp Neurol 67:241–261

    Google Scholar 

  • Tower S, Howe H, Bodian D (1941) Fibrillation in skeletal muscle in relation to denervation and to inactivation without denervation. J Neurophysiol 4:398–401

    Article  Google Scholar 

  • Trachez MM, Takashi Sudo R, Suarez-Kurtz G (1990) Alterations in the functional properties of skinned fibers from denervated rabbit skeletal muscle. Am J Physiol Cell Physiol 259: C503–C506

    CAS  Google Scholar 

  • Trimmer JS, Cooperman SS, Agnew WS, Mandel G (1990) Regulation of muscle sodium channel transcript during development and in response to denervation. Dev Biol 142:360–367

    PubMed  CAS  Google Scholar 

  • Velussi C, Danieli-Betto D, Caldesi-Valeri V, Midrio M (1983) Influenze metaboliche sull’insorgenza della fibrillazione e sul potenziale di membrana dei muscoli denervati. Riv Pat Nerv Ment 103:225–234

    Google Scholar 

  • Vrbová G (1966) Factors determining the speed of contraction of striated muscle. J Physiol (Lond) 185: 17P–18P

    Google Scholar 

  • Vergara C, Ramirez B (2004) CNTF, a pleiotropic cytokine: emphasis on its myotrophic role. Brain Res Rev 47:161–173

    PubMed  CAS  Google Scholar 

  • Vergara C, Ramirez B, Behrens MI (1993) Colchicine alters apamin receptors, electrical activity and skeletal muscle relaxation. Muscle Nerve 16:935–940

    PubMed  CAS  Google Scholar 

  • Vyskočil F, Moravec J, Janský L (1971) Resting state of myoneural junction in a hibernator. Brain Res 34:381–384

    PubMed  Google Scholar 

  • Ware F Jr, Bennet AL, McIntyre AR (1954) Membrane resting potential of denervated mammalian skeletal muscle measured in vivo. Am J Physiol 177:115–118

    PubMed  Google Scholar 

  • Warnick JE, Albuquerque EX, Guth L (1977) The demonstration of neurotrophic function by application of colchicine or vinblastine to the peripheral nerve. Exp Neurol 57:622–636

    PubMed  CAS  Google Scholar 

  • Weis J, Lie DC, Ragoss U, Zuchner SL, Schroder JM, Karpati G, Farruggella T, Stahl N, Yancopoulos GD, DiStefano PS (1988) Increased expression of CNTF receptor alpha in denervated human skeletal muscle. Neuropathol Exp Neurol 57:850–857

    Article  Google Scholar 

  • Westgaard RH (1975) Influence of activity on the passive electrical properties of soleus muscle fibres in the rat. J Physiol Lond 251:683–697

    PubMed  CAS  Google Scholar 

  • Westgaard RH, Lømo T (1988) Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat. J Neurosci 8:4415–4426

    PubMed  CAS  Google Scholar 

  • Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscle. Dev Biol 141:24–40

    PubMed  CAS  Google Scholar 

  • Windisch A, Gundersen K, Szaboles MJ, Gruber H, Lømo T (1998) Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol 510:623–632

    PubMed  CAS  Google Scholar 

  • Witzemann V, Sakmann B (1991) Differential regulation of myoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett 282:259–264

    PubMed  CAS  Google Scholar 

  • Witzemann V, Brenner HR, Sakmann B (1991) Neural factors regulate AchR subunit mRNAs at rat neuromuscular synapses. J Cell Biol 114:125–141

    PubMed  CAS  Google Scholar 

  • Yang JS, Sladky JT, Kallen RG, Barchi RL (1991) TTX-sensitive and TTX-insensitive sodium channels mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron 7:421–427

    PubMed  CAS  Google Scholar 

  • Yang X, Arber S, William C, Li L, Tanabe Y, Jessel TM, Birchmeier C, Burden SJ (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410

    PubMed  CAS  Google Scholar 

  • Younkin SG, Brett RS, Davey B, Younkin LH (1978) Substances moved by axonal transport and released by nerve stimulation have an innervation-like effect on muscle. Science 200:1292–1295

    PubMed  CAS  Google Scholar 

  • Zhan WZ, Miyata H, Prakash YS, Sieck GC (1997) Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J Appl Physiol 82:1145–1153

    PubMed  CAS  Google Scholar 

  • Zhong H, Roy RR, Kim SJ, Hodgson JA, Edgerton VR (2004) Is the spinal cord isolation (SI) a model of hindlimb muscle inactivity? Soc Neurosci Abstr 189.9

  • Zhong H, Roy RR, Siengthai B, Edgerton VR (2005) Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol 99:1494–1499

    PubMed  Google Scholar 

  • Zorzato F, Volpe P, Damiani E, Quaglino D Jr, Margreth A (1989) Terminal cisternae of denervated rabbit skeletal muscle: alterations of functional properties of Ca2+ release channels. Am J Physiol Cell Physiol 257:C504–C511

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menotti Midrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Midrio, M. The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98, 1–21 (2006). https://doi.org/10.1007/s00421-006-0256-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0256-z

Keywords

Navigation